论文标题

非固定强烈各向异性置换对称模型的临界动力学

Critical dynamics of non-conserved strongly anisotropic permutation symmetric three-vector model

论文作者

Pereira, Rajiv G.

论文摘要

我们探索采用重新归一化的组理论,即遵守对称的三矢量模型的临界缩放行为,该模型遵守非连接动力学,并具有相关的各向异性扰动,该动力扰动将系统驱动到非平衡稳态。我们明确地找到具有最多两个循环的独立关键指数。它们包括静态指数$ν$和$η$,OFF平衡指数$ \widetildeη$,动态指数$ z $和强方差指数$δ$。我们还根据这些表达其他各向异性指数。

We explore, employing the renormalization-group theory, the critical scaling behavior of the permutation symmetric three-vector model that obeys non-conserving dynamics and has a relevant anisotropic perturbation which drives the system into a non-equilibrium steady state. We explicitly find the independent critical exponents with corrections up to two loops. They include the static exponents $ν$ and $η$, the off equilibrium exponent $\widetildeη$, the dynamic exponent $z$ and the strong anisotropy exponent $Δ$. We also express the other anisotropy exponents in terms of these.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源