论文标题

从任务特定的异型模式域移位数据集中学习组织和脑病变的联合分割

Learning joint segmentation of tissues and brain lesions from task-specific hetero-modal domain-shifted datasets

论文作者

Dorent, Reuben, Booth, Thomas, Li, Wenqi, Sudre, Carole H., Kafiabadi, Sina, Cardoso, Jorge, Ourselin, Sebastien, Vercauteren, Tom

论文摘要

多模式MRI的脑组织分割是许多神经成像分析管道的关键基础。但是,已开发出已建立的组织分割方法是为了应对由病理学(例如白质病变或肿瘤)引起的大型解剖变化,并且在这些情况下常常失败。同时,随着深度神经网络(DNN)的出现,脑部病变的分割显着成熟。但是,现有的方法很少允许正常组织和脑病变的联合分割。当前,注释的数据集通常仅处理一个特定任务,并依靠特定于任务的成像协议,包括特定于任务的成像模式,这是由于注释数据集通常仅处理一项特定任务的事实而阻碍了目前为这种联合任务开发DNN的。在这项工作中,我们提出了一种新的方法,以从聚合特定于任务的异型模式域偏移和部分注释的数据集中构建关节组织和病变分割模型。从关节问题的各种公式开始,我们展示了如何从经验上分解和优化预期的风险。我们利用了处理跨数据集的异质成像方式的风险上限。为了应对潜在的域转移,我们基于数据增强,对抗性学习和伪健康的一代集成并测试了三种常规技术。对于每个单独的任务,我们的联合方法与特定于任务和全面监督的模型达到了可比的性能。对两种不同类型的脑病变进行了评估,该框架将进行评估:白质病变和神经胶质瘤。在后一种情况下,缺乏用于定量评估目的的联合基础真相,我们提出并使用一种新型的临床定性评估方法。

Brain tissue segmentation from multimodal MRI is a key building block of many neuroimaging analysis pipelines. Established tissue segmentation approaches have, however, not been developed to cope with large anatomical changes resulting from pathology, such as white matter lesions or tumours, and often fail in these cases. In the meantime, with the advent of deep neural networks (DNNs), segmentation of brain lesions has matured significantly. However, few existing approaches allow for the joint segmentation of normal tissue and brain lesions. Developing a DNN for such a joint task is currently hampered by the fact that annotated datasets typically address only one specific task and rely on task-specific imaging protocols including a task-specific set of imaging modalities. In this work, we propose a novel approach to build a joint tissue and lesion segmentation model from aggregated task-specific hetero-modal domain-shifted and partially-annotated datasets. Starting from a variational formulation of the joint problem, we show how the expected risk can be decomposed and optimised empirically. We exploit an upper bound of the risk to deal with heterogeneous imaging modalities across datasets. To deal with potential domain shift, we integrated and tested three conventional techniques based on data augmentation, adversarial learning and pseudo-healthy generation. For each individual task, our joint approach reaches comparable performance to task-specific and fully-supervised models. The proposed framework is assessed on two different types of brain lesions: White matter lesions and gliomas. In the latter case, lacking a joint ground-truth for quantitative assessment purposes, we propose and use a novel clinically-relevant qualitative assessment methodology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源