论文标题

大规模非线性Granger因果关系:从短时间序列数据中恢复有向网络的数据驱动的多元方法

Large-scale nonlinear Granger causality: A data-driven, multivariate approach to recovering directed networks from short time-series data

论文作者

Wismüller, Axel, DSouza, Adora M., Abidin, Anas Z.

论文摘要

为了深入了解复杂系统,从观察时间序列数据中推断非线性因果关系关系是一个关键挑战。具体而言,估计大型系统中的相互作用组件之间的因果关系,只有几个时间观察的简短记录仍然是一个重要但尚未解决的问题。在这里,我们介绍了一种大规模的非线性Granger因果关系(LSNGC)方法,用于推断系统组件之间的定向,非线性,多元因果关系从短较高的高维时间序列记录中。通过对有限观察数据的非线性状态空间转换进行建模,LSNGC可以确定休闲关系,而没有明确的先验假设,即以计算有效的方式对组件时间序列之间的功能相互依赖性。此外,我们的方法提供了一种数学公式,揭示了推断的因果关系的统计意义。我们广泛研究了LSNGC从两个节点到34个节点混乱的时间序列系统恢复网络结构的能力。我们的结果表明,LSNGC从有限的观察数据中捕获了有意义的相互作用,与传统使用的方法相比,它在这种情况下表现良好。最后,我们通过推断从人类大脑的功能磁共振成像(FMRI)数据中获得的大量相对短的时间序列之间的定向非线性,多元因果关系来证明LSNGC对大型非线性,多元因果关系的适用性。

To gain insight into complex systems it is a key challenge to infer nonlinear causal directional relations from observational time-series data. Specifically, estimating causal relationships between interacting components in large systems with only short recordings over few temporal observations remains an important, yet unresolved problem. Here, we introduce a large-scale Nonlinear Granger Causality (lsNGC) approach for inferring directional, nonlinear, multivariate causal interactions between system components from short high-dimensional time-series recordings. By modeling interactions with nonlinear state-space transformations from limited observational data, lsNGC identifies casual relations with no explicit a priori assumptions on functional interdependence between component time-series in a computationally efficient manner. Additionally, our method provides a mathematical formulation revealing statistical significance of inferred causal relations. We extensively study the ability of lsNGC to recovering network structure from two-node to thirty-four node chaotic time-series systems. Our results suggest that lsNGC captures meaningful interactions from limited observational data, where it performs favorably when compared to traditionally used methods. Finally, we demonstrate the applicability of lsNGC to estimating causality in large, real-world systems by inferring directional nonlinear, multivariate causal relationships among a large number of relatively short time-series acquired from functional Magnetic Resonance Imaging (fMRI) data of the human brain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源