论文标题

基于网络流量分析的物联网设备标识

Network Traffic Analysis based IoT Device Identification

论文作者

Chowdhury, Rajarshi Roy, Aneja, Sandhya, Aneja, Nagender, Abas, Emeroylariffion

论文摘要

设备标识是在不使用其分配的网络或其他凭据的情况下在Internet上识别设备的过程。由于各种设备,协议和控制接口,物联网(IoT)设备(IoT)设备的使用急剧上升已在设备识别中施加了新的挑战。在网络中,传统的IoT设备通过使用容易欺骗的IP或MAC地址来相互识别。此外,IoT设备是具有最小嵌入式安全解决方案的低功率设备。为了减轻物联网设备中的问题,可以使用指纹(DFP)用于设备识别。 DFP通过使用隐式标识符(例如网络流量(或数据包),无线电信号)来标识设备,该设备通过网络通过网络通信。这些标识符与设备硬件和软件功能密切相关。在本文中,我们利用TCP/IP数据包标头功能来创建使用设备原始网络数据包的设备指纹。我们提出了一组三个指标,这些指标与数据包分开,这些功能会积极贡献设备识别。为了评估我们的方法,我们使用了公开访问的两个数据集。我们观察到设备类型分类的准确性为99.37%和83.35%的精度,从IoT Sentinel数据集识别单个设备方面的准确性。但是,使用UNSW数据集设备类型识别精度达到97.78%。

Device identification is the process of identifying a device on Internet without using its assigned network or other credentials. The sharp rise of usage in Internet of Things (IoT) devices has imposed new challenges in device identification due to a wide variety of devices, protocols and control interfaces. In a network, conventional IoT devices identify each other by utilizing IP or MAC addresses, which are prone to spoofing. Moreover, IoT devices are low power devices with minimal embedded security solution. To mitigate the issue in IoT devices, fingerprint (DFP) for device identification can be used. DFP identifies a device by using implicit identifiers, such as network traffic (or packets), radio signal, which a device used for its communication over the network. These identifiers are closely related to the device hardware and software features. In this paper, we exploit TCP/IP packet header features to create a device fingerprint utilizing device originated network packets. We present a set of three metrics which separate some features from a packet which contribute actively for device identification. To evaluate our approach, we used publicly accessible two datasets. We observed the accuracy of device genre classification 99.37% and 83.35% of accuracy in the identification of an individual device from IoT Sentinel dataset. However, using UNSW dataset device type identification accuracy reached up to 97.78%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源