论文标题

通过等离子体技术驱动能量无人脱氢动力学

Driving energetically-unfavorable dehydrogenation dynamics with plasmonics

论文作者

Sytwu, Katherine, Vadai, Michal, Hayee, Fariah, Angell, Daniel K., Dai, Alan, Dixon, Jefferson, Dionne, Jennifer

论文摘要

纳米颗粒的表面结构和几何形状通常决定发生化学转化的位置,低配位数,高野外的位点具有能量偏爱。在这里,我们展示了等离子的光激发如何实现空间控制的化学变换,包括进入没有照明的地点,这将是无能为力的。我们设计了一个交叉的bar au-pdhx天线反应系统,该系统将电磁增强定位于天生反应性的PDHX纳米棒尖端。使用光学耦合的原位环境透射电子显微镜,我们跟踪具有变化的光学照明强度,波长和氢压力的单个天线反应器对脱氢。我们的原位实验表明,等离子可以使新的催化位点,包括纳米棒面上的氢化解离。分子动力学模拟证实,这些新的成核位点在能量上是不利的,并且只能通过定制的等离激元激发访问。

Nanoparticle surface structure and geometry generally dictate where chemical transformations occur, with the low-coordination-number, high-radius-of-curvature sites being energetically-preferred. Here, we show how optical excitation of plasmons enables spatially-controlled chemical transformations, including access to sites which, without illumination, would be energetically-unfavorable. We design a crossed-bar Au-PdHx antenna-reactor system that localizes electromagnetic enhancement away from the innately reactive PdHx nanorod tips. Using optically-coupled in situ environmental transmission electron microscopy, we track the dehydrogenation of individual antenna-reactor pairs with varying optical illumination intensity, wavelength, and hydrogen pressure. Our in situ experiments show that plasmons enable new catalytic sites, including hydrogenation dissociation at the nanorod faces. Molecular dynamics simulations confirm that these new nucleation sites are energetically unfavorable in equilibrium and only accessible via tailored plasmonic excitation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源