论文标题

用于流体结构问题的弱压缩混合不连续的Galerkin公式

A weakly compressible hybridizable discontinuous Galerkin formulation for fluid-structure interaction problems

论文作者

La Spina, Andrea, Kronbichler, Martin, Giacomini, Matteo, Wall, Wolfgang A., Huerta, Antonio

论文摘要

在这项工作中提出了用于解决弱压缩流的流体结构相互作用(FSI)问题的方案。一种新型的杂交不连续的Galerkin(HDG)方法是为流体方程式离散化的,而标准连续的Galerkin(CG)方法是针对结构问题的。所选的HDG求解器结合了以较高阶段的准确性和有效的实现为主导的流量中不连续的Galerkin(DG)方法的鲁棒性。在这项贡献中检查了两种耦合策略,即在混合HDG-CG离散化和基于Nitsche方法的单片方法的背景下,分区的Dirichlet-Neumann方案进行了研究,利用了数值磁通量的定义,以及解决方案的痕迹以构成耦合条件。数值实验表明,HDG和CG原始变量和混合变量以及后处理流体速度的超授权的最佳收敛性。与完全不可压缩的配方相比,所提出的弱压缩配方的鲁棒性和效率也在选择两个维度FSI基准问题的选择上也突出显示。

A scheme for the solution of fluid-structure interaction (FSI) problems with weakly compressible flows is proposed in this work. A novel hybridizable discontinuous Galerkin (HDG) method is derived for the discretization of the fluid equations, while the standard continuous Galerkin (CG) approach is adopted for the structural problem. The chosen HDG solver combines robustness of discontinuous Galerkin (DG) approaches in advection-dominated flows with higher order accuracy and efficient implementations. Two coupling strategies are examined in this contribution, namely a partitioned Dirichlet-Neumann scheme in the context of hybrid HDG-CG discretizations and a monolithic approach based on Nitsche's method, exploiting the definition of the numerical flux and the trace of the solution to impose the coupling conditions. Numerical experiments show optimal convergence of the HDG and CG primal and mixed variables and superconvergence of the postprocessed fluid velocity. The robustness and the efficiency of the proposed weakly compressible formulation, in comparison to a fully incompressible one, are also highlighted on a selection of two and three dimensional FSI benchmark problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源