论文标题

Feynman-Path型仿真使用稳定器投影仪的分解单位的分解

Feynman-path type simulation using stabilizer projector decomposition of unitaries

论文作者

Huang, Yifei, Love, Peter

论文摘要

我们提出了一种基于将单一门分解为稳定器投影仪的量子电路的经典仿真方法。通过仅分解非克利福德门,我们就可以利用Gottesman-Knill定理,并在基于稳定器的模拟和Feynman-Path型模拟之间建立桥梁。我们给出了这种方法的两个变体:基于稳定器的路径综​​合递归(SPIR)和稳定器投影仪收缩(SPC)。我们还分析了方法与Bravyi-Gosset算法和递归Feynman Path-Contegrental算法相比,我们的方法的进一步优势和缺点。我们构建一个参数化电路集合,并在我们的方法提供卓越性能的此合奏中识别参数态度。我们还估计使用方法模拟量子至上实验的时间成本,并激发该方法的潜在改进。

We propose a classical simulation method for quantum circuits based on decomposing unitary gates into a sum of stabilizer projectors. By only decomposing the non-Clifford gates, we take advantage of the Gottesman-Knill theorem and build a bridge between stabilizer-based simulation and Feynman-path-type simulation. We give two variants of this method: stabilizer-based path-integral recursion (SPIR) and stabilizer projector contraction (SPC). We also analyze further advantages and disadvantages of our method compared to the Bravyi-Gosset algorithm and recursive Feynman path-integral algorithms. We construct a parametrized circuit ensemble and identify the parameter regime in this ensemble where our method offers superior performance. We also estimate the time cost for simulating quantum supremacy experiments with our method and motivate potential improvements of the method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源