论文标题

机器人视觉场景理解挑战

The Robotic Vision Scene Understanding Challenge

论文作者

Hall, David, Talbot, Ben, Bista, Suman Raj, Zhang, Haoyang, Smith, Rohan, Dayoub, Feras, Sünderhauf, Niko

论文摘要

能够探索环境并了解其中所有对象的位置和类型对于必须与人类紧密相互作用的室内机器人平台很重要。但是,由于缺乏标准化的测试,由于需要主动机器人代理和完美的对象基础,因此很难评估该领域的进度。为了帮助提供测试场景理解系统的标准,我们提出了使用模拟的新机器人视觉场景理解挑战,以实现Active Robot代理的可重复实验。我们提供两种具有挑战性的任务类型,三个难度级别,五个模拟环境以及一个评估3D Cuboid对象图的新评估措施。我们的目的是通过实现主动机器人视觉系统的评估和比较来推动现场理解的最新研究。

Being able to explore an environment and understand the location and type of all objects therein is important for indoor robotic platforms that must interact closely with humans. However, it is difficult to evaluate progress in this area due to a lack of standardized testing which is limited due to the need for active robot agency and perfect object ground-truth. To help provide a standard for testing scene understanding systems, we present a new robot vision scene understanding challenge using simulation to enable repeatable experiments with active robot agency. We provide two challenging task types, three difficulty levels, five simulated environments and a new evaluation measure for evaluating 3D cuboid object maps. Our aim is to drive state-of-the-art research in scene understanding through enabling evaluation and comparison of active robotic vision systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源