论文标题
详细信息中的魔鬼:对齐有条件嵌入的视觉线索重新识别
Devil's in the Details: Aligning Visual Clues for Conditional Embedding in Person Re-Identification
论文作者
论文摘要
尽管人们的重新识别取得了令人印象深刻的进步,但诸如闭塞,视野和类似衣服的换件之类的困难案例仍然带来巨大的挑战。除了整体视觉功能外,匹配和比较详细信息对于应对这些挑战也至关重要。本文提出了两种关键识别模式,以更好地利用行人图像的详细信息,即大多数现有方法无法满足。首先,视觉线索对齐要求模型从两个图像中选择和对齐决定性区域对成对比较,而现有方法仅对齐具有高特征相似性或相同语义标签的预定义规则的区域。其次,条件特征嵌入需要查询图像的总体特征,以根据其匹配的画廊图像进行动态调整,而大多数现有方法忽略了参考图像。通过引入新技术,包括对应注意模块和基于差异的GCN,我们提出了一种端到端的REID方法,将这两种模式集成到一个统一的框架中,称为CACE-NET((c)lue(a)strignment和(c)(c)Ontientional(e)Mbedding)。实验表明,CACE-NET在三个公共数据集上实现了最先进的性能。
Although Person Re-Identification has made impressive progress, difficult cases like occlusion, change of view-pointand similar clothing still bring great challenges. Besides overall visual features, matching and comparing detailed information is also essential for tackling these challenges. This paper proposes two key recognition patterns to better utilize the detail information of pedestrian images, that most of the existing methods are unable to satisfy. Firstly, Visual Clue Alignment requires the model to select and align decisive regions pairs from two images for pair-wise comparison, while existing methods only align regions with predefined rules like high feature similarity or same semantic labels. Secondly, the Conditional Feature Embedding requires the overall feature of a query image to be dynamically adjusted based on the gallery image it matches, while most of the existing methods ignore the reference images. By introducing novel techniques including correspondence attention module and discrepancy-based GCN, we propose an end-to-end ReID method that integrates both patterns into a unified framework, called CACE-Net((C)lue(A)lignment and (C)onditional (E)mbedding). The experiments show that CACE-Net achieves state-of-the-art performance on three public datasets.