论文标题

对皮肤淋巴瘤和湿疹分类的组织病理学载玻片的语义分割

Semantic Segmentation of Histopathological Slides for the Classification of Cutaneous Lymphoma and Eczema

论文作者

Scheurer, Jérémy, Ferrari, Claudio, Bom, Luis Berenguer Todo, Beer, Michaela, Kempf, Werner, Haug, Luis

论文摘要

真菌病真菌(MF)是一种罕见的,潜在的生命威胁性皮肤病,在临床和组织学上的早期阶段与湿疹相似,这是一种非常常见和良性的皮肤状况。为了提高生存率,需要尽早提供适当的治疗方法。为此,专家的一个关键步骤是评估患者皮肤组织的组织病理学幻灯片(载玻片)或整个幻灯片图像(WSI)。我们介绍了一种深入学习辅助诊断工具,为病理学家的决策过程带来了两个价值。首先,我们的算法将WSI准确地分为与准确诊断相关的区域,在新型数据集中达到69%的平均值为69%,Matthews相关得分为83%。此外,我们还表明,我们的模型在参考数据集中与最新技术具有竞争力。其次,使用分割图和原始图像,我们能够预测患者是否患有MF或湿疹。我们创建了两个模型,这些模型可以在诊断管道的不同阶段应用,从而有可能消除威胁生命的错误。分类结果比仅将WSI用作输入的分类结果更容易解释,因为它也基于分割图。我们称为EU-NET的分割模型,它扩展了一个经典的U-NET,其中具有一个有效网络编码器,该编码器已在Imagenet数据集上进行了预先训练。

Mycosis fungoides (MF) is a rare, potentially life threatening skin disease, which in early stages clinically and histologically strongly resembles Eczema, a very common and benign skin condition. In order to increase the survival rate, one needs to provide the appropriate treatment early on. To this end, one crucial step for specialists is the evaluation of histopathological slides (glass slides), or Whole Slide Images (WSI), of the patients' skin tissue. We introduce a deep learning aided diagnostics tool that brings a two-fold value to the decision process of pathologists. First, our algorithm accurately segments WSI into regions that are relevant for an accurate diagnosis, achieving a Mean-IoU of 69% and a Matthews Correlation score of 83% on a novel dataset. Additionally, we also show that our model is competitive with the state of the art on a reference dataset. Second, using the segmentation map and the original image, we are able to predict if a patient has MF or Eczema. We created two models that can be applied in different stages of the diagnostic pipeline, potentially eliminating life-threatening mistakes. The classification outcome is considerably more interpretable than using only the WSI as the input, since it is also based on the segmentation map. Our segmentation model, which we call EU-Net, extends a classical U-Net with an EfficientNet-B7 encoder which was pre-trained on the Imagenet dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源