论文标题

奥丁:视频分析中的自动漂移检测和恢复

ODIN: Automated Drift Detection and Recovery in Video Analytics

论文作者

Suprem, Abhijit, Arulraj, Joy, Pu, Calton, Ferreira, Joao

论文摘要

计算机视觉的最新进展导致人们对视觉数据分析的兴趣重新出现。研究人员正在开发系统,以有效地有效地分析视觉数据。这些系统遇到的一个重大挑战在于现实世界的视觉数据中的漂移。例如,一个未在包含雪的图像上训练的自动驾驶汽车的模型在实践中遇到它们时效果不佳。这种漂移现象限制了用于视觉数据分析的模型的准确性。在本文中,我们提出了一个名为ODIN的视觉数据分析系统,该系统自动检测并从漂移中恢复。奥丁使用对抗性自动编码器来学习高维图像的分布。我们提出了一种无监督的算法,用于通过比较给定数据的分布与先前看到的数据的分布来检测漂移。当Odin检测到漂移时,它会调用漂移恢复算法来部署针对新型数据点的专业模型。这些专业模型在准确性,性能和内存足迹方面的非专业化方式优于其非专业化。最后,我们提出了一种模型选择算法,用于选择最适合专业模型的集合来处理给定的输入。我们评估了Odin在伯克利DeepDrive数据集各种环境下捕获的高分辨率仪表板摄像头视频中ODIN的功效和效率。我们证明,与没有自动化漂移检测和恢复的基线系统相比,Odin的模型可提供6倍的吞吐量,更高的精度和6倍的内存足迹。

Recent advances in computer vision have led to a resurgence of interest in visual data analytics. Researchers are developing systems for effectively and efficiently analyzing visual data at scale. A significant challenge that these systems encounter lies in the drift in real-world visual data. For instance, a model for self-driving vehicles that is not trained on images containing snow does not work well when it encounters them in practice. This drift phenomenon limits the accuracy of models employed for visual data analytics. In this paper, we present a visual data analytics system, called ODIN, that automatically detects and recovers from drift. ODIN uses adversarial autoencoders to learn the distribution of high-dimensional images. We present an unsupervised algorithm for detecting drift by comparing the distributions of the given data against that of previously seen data. When ODIN detects drift, it invokes a drift recovery algorithm to deploy specialized models tailored towards the novel data points. These specialized models outperform their non-specialized counterpart on accuracy, performance, and memory footprint. Lastly, we present a model selection algorithm for picking an ensemble of best-fit specialized models to process a given input. We evaluate the efficacy and efficiency of ODIN on high-resolution dashboard camera videos captured under diverse environments from the Berkeley DeepDrive dataset. We demonstrate that ODIN's models deliver 6x higher throughput, 2x higher accuracy, and 6x smaller memory footprint compared to a baseline system without automated drift detection and recovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源