论文标题

非平衡噪声引起的巨大的布朗尼亚语但非高斯的扩散

Colossal Brownian yet non-Gaussian diffusion induced by nonequilibrium noise

论文作者

Białas, K., Łuczka, J., Hänggi, P., Spiechowicz, J.

论文摘要

我们报道了新型的布朗尼,但非高斯扩散,其中粒子的均方位移随时间而线性生长,粒子扩散的概率密度类似于高斯,但是,其位置增量的概率密度具有指数衰减的尾巴。与该领域的最新作品相反,这种行为不是空间或时间依赖性扩散的结果,而是由作用在粒子上的外部非热噪声引起的。指数尾巴在增量统计数据中的存在导致扩散的巨大增强,从而急剧超过了“巨型”扩散标签下已知的先前研究的情况。这种巨大的扩散增强至关重要地影响了首次到达问题的广泛范围,例如扩散有限的反应来控制活细胞中的运输。

We report on novel Brownian, yet non-Gaussian diffusion, in which the mean square displacement of the particle grows linearly with time, the probability density for the particle spreading is Gaussian-like, however, the probability density for its position increments possesses an exponentially decaying tail. In contrast to recent works in this area, this behaviour is not a consequence of either a space or time-dependent diffusivity, but is induced by external non-thermal noise acting on the particle dwelling in a periodic potential. The existence of the exponential tail in the increment statistics leads to colossal enhancement of diffusion, surpassing drastically the previously researched situation known under the label of "giant" diffusion. This colossal diffusion enhancement crucially impacts a broad spectrum of the first arrival problems, such as diffusion limited reactions governing transport in living cells.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源