论文标题
空轴平行框
Empty axis-parallel boxes
论文作者
论文摘要
我们表明,对于$ d $维单元立方体中的每一集$ n $点,有一个空的轴平行盒的音量至少$ω(d/n)$,at $ n \ to \ to \ infty $和$ d $是固定的。在相反的方向上,我们给出一个没有空的轴 - 盒$ o(d^2 \ log d/n)$的构造。这些分别在$ω(\ log d/n)$和$ o(2^{7d}/n)$的先前最佳界限上得到改善。
We show that, for every set of $n$ points in the $d$-dimensional unit cube, there is an empty axis-parallel box of volume at least $Ω(d/n)$ as $n\to\infty$ and $d$ is fixed. In the opposite direction, we give a construction without an empty axis-parallel box of volume $O(d^2\log d/n)$. These improve on the previous best bounds of $Ω(\log d/n)$ and $O(2^{7d}/n)$ respectively.