论文标题

Euler-Heisenberg-Ads黑洞的热力学

Thermodynamics of the Euler-Heisenberg-AdS black hole

论文作者

Magos, Daniela, Bretón, Nora

论文摘要

我们将解决方案概括为欧拉 - 海森贝格(EH)理论,该理论耦合到重力,代表引入宇宙常数的非线电荷静态黑洞(BH);获得的解决方案的特征是四个参数:质量$ M $,电荷$ Q $,宇宙常数$λ$(正或负)和Euler-Heisenberg理论参数$ a $。然后,我们简要分析了一些BH功能,例如地平线,电磁场和大地测量学。我们主要关注其热力学特性,在扩展空间中,在该空间中,反DE保姆参数被解释为压力。我们显示了Smarr公式与BH热力学的第一定律之间的一致性,将EH理论的参数解释为真空极化。我们确定状态和关键点的方程式;临界体积决定了BHS的两个分支,一个分支几乎是Maxwell行为,第二个明显的非线性电磁。此外,对吉布斯自由能的分析表明可以发生两个相变。我们还构建了可以观察到BH的不同阶段的共存曲线$ p $ - $ t $;关键点的特征在于标准平均场理论指数,关键变量满足$ p _ {\ rm crit} v _ {\ rm crit}/ t _ {\ rm crit} = 3/8 $加上Euler-heisenberg parameter $ a $ a $ a $的订单的条款

We generalize the solution to the Euler-Heisenberg (EH) theory coupled to gravity that represents a nonlinearly charged static black hole (BH) introducing the cosmological constant; the obtained solution is characterized by four parameters: mass $M$, electric charge $Q$, cosmological constant $Λ$ (positive or negative) and the Euler-Heisenberg theory parameter $a$. Then we briefly analyze some BH features like horizons, electromagnetic field and geodesics. We mainly focus on its thermodynamic properties in the extended space where the anti-de Sitter parameter is interpreted as the pressure; we show the consistency between the Smarr formula and the first law of BH thermodynamics, interpreting the parameter of the EH theory as the vacuum polarization. We determine the equation of state and the critical points; the critical volume determines two branches of BHs, one near Maxwell behavior and a second one manifestly nonlinear electromagnetic. Moreover, the analysis of the Gibbs free energy indicates that two phase transitions can occur; we also construct the coexistence curve $P$-$T$ where the different phases of the BH can be observed; the critical point is characterized by the standard mean field theory exponents, and the critical variables satisfy $P_{\rm crit} v_{\rm crit}/ T_{\rm crit} = 3/8 $ plus terms of the ten thousandths order in the Euler-Heisenberg parameter $a$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源