论文标题
具有无限潜力和竞争非线性的各向异性方程
Anisotropic equations with indefinite potential and competing nonlinearities
论文作者
论文摘要
我们认为由可变指数$ p $ -laplacian加上无限潜在术语驱动的非线性Dirichlet问题。该反应具有参数凹面(sublinear)项和凸(超线性)扰动的竞争作用(一个各向异性凹形凸出问题)。我们证明了一个分叉型定理,将正溶液集中的变化描述为正参数$λ$都会有所不同。此外,我们证明了最小阳性解决方案的存在。
We consider a nonlinear Dirichlet problem driven by a variable exponent $p$-Laplacian plus an indefinite potential term. The reaction has the competing effects of a parametric concave (sublinear) term and of a convex (superlinear) perturbation (an anisotropic concave-convex problem). We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the positive parameter $λ$ varies. Also, we prove the existence of minimal positive solutions.