论文标题
光谱差距的持续存在
Persistence of the spectral gap for the Landau-Pekar equations
论文作者
论文摘要
Landau-Pekar方程描述了强耦合极化物的动力学。在这里,我们提供一类初始数据,相关的有效哈密顿量一直存在均匀的光谱差距。对于此类初始数据,这使我们能够将Landau-Pekar方程的绝热定理的结果及其从[8,7]中获得的Fr oehlich模型推导到更大的时间。
The Landau-Pekar equations describe the dynamics of a strongly coupled polaron. Here we provide a class of initial data for which the associated effective Hamiltonian has a uniform spectral gap for all times. For such initial data, this allows us to extend the results on the adiabatic theorem for the Landau-Pekar equations and their derivation from the Froehlich model obtained in [8, 7] to larger times.