论文标题
在$ h \toγγ$ decay中以均衡功率和端点差异的分解:ii。重新归一化和规模演化
Factorization at Subleading Power and Endpoint Divergences in $h\toγγ$ Decay: II. Renormalization and Scale Evolution
论文作者
论文摘要
建立在最近推导出$ b $ quark的裸体分解定理的基础上,引起了基于软性共线有效理论的$ h \ \toγγ$衰变振幅的贡献,我们得出了第一个在尺度比率下均衡的过程中所描述的过程的重新归一化的分解定理,其中$λ= m_b/m_b/m_b/m_h \ ll 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $。我们证明了匹配系数和端点区域中的算子矩阵元素的两个重构条件,在那里它们表现出奇异性,从而引起了不同的卷积积分。重构条件确保了衰减幅度对端点奇点的速度调节剂的依赖性取消了所有扰动理论的顺序。我们建立了分解公式的重新归一化形式,证明了“端点正则化”不会通过重新定义其中一个匹配系数来吸收所有秩序而产生的额外贡献。我们得出了分解公式中所有数量满足的恢复量化的组进化方程,并使用它们来预测$α{\ hspace {\ hspace {\ hspace {0.3mm}}α_s^2 {\ hspace {\ hspace {0.3mm}} l^k $的三个环demplition $ l = $ l = l = l = l = l = l = l = l = l = l = l = l = $ k = 6,5,4,3 $。我们发现与现有的数值结果达成了完美的一致性,这些结果是涉及无质量Quark循环的三环贡献的幅度和分析结果。另一方面,我们不同意先前尝试预测一系列spobleding对数$ \simα{\ hspace {\ hspace {0.3mm}}α_s^n {\ hspace {0.3mm}} l^{2n+1} $的结果。
Building on the recent derivation of a bare factorization theorem for the $b$-quark induced contribution to the $h\toγγ$ decay amplitude based on soft-collinear effective theory, we derive the first renormalized factorization theorem for a process described at subleading power in scale ratios, where $λ=m_b/M_h\ll 1$ in our case. We prove two refactorization conditions for a matching coefficient and an operator matrix element in the endpoint region, where they exhibit singularities giving rise to divergent convolution integrals. The refactorization conditions ensure that the dependence of the decay amplitude on the rapidity regulator, which regularizes the endpoint singularities, cancels out to all orders of perturbation theory. We establish the renormalized form of the factorization formula, proving that extra contributions arising from the fact that "endpoint regularization" does not commute with renormalization can be absorbed, to all orders, by a redefinition of one of the matching coefficients. We derive the renormalization-group evolution equation satisfied by all quantities in the factorization formula and use them to predict the large logarithms of order $α{\hspace{0.3mm}}α_s^2{\hspace{0.3mm}} L^k$ in the three-loop decay amplitude, where $L=\ln(-M_h^2/m_b^2)$ and $k=6,5,4,3$. We find perfect agreement with existing numerical results for the amplitude and analytical results for the three-loop contributions involving a massless quark loop. On the other hand, we disagree with the results of previous attempts to predict the series of subleading logarithms $\simα{\hspace{0.3mm}}α_s^n{\hspace{0.3mm}} L^{2n+1}$.