论文标题
通过可交易信用计划管理网络拥塞:基于旅行的MFD方法
Managing network congestion with a tradable credit scheme: a trip-based MFD approach
论文作者
论文摘要
这项研究使用基于旅行的宏观基本图模型来研究基于区域的可交易信用计划(TCS)的效率和有效性。在拟议的TCS中,监管机构向所有旅行者分配初始信用,并设计时间变化和旅行时间的特定信用关税。积分是通过信贷市场在旅行者和监管机构之间进行交易的,信贷价格取决于信贷的需求和供应。从所需的到达时间,行程长度和出发时间选择偏好方面,考虑旅行者的异质性。 TCS被纳入日常建模框架中,以检查旅行者的学习过程,网络的发展以及信贷市场的特性。通过分析建立了平衡解决方案的存在和在均衡状态下的信用价格的独特性。此外,开发了一个开源模拟框架,以验证拟议的TCS的分析特性,并将其与移动性,网络绩效和社会福利方面的替代控制策略进行比较。然后采用贝叶斯优化以优化信用收费计划。数值结果表明,提议的TCS优于无控制案例,并符合日期定价策略的性能,同时保持收入中性的性质。
This study investigates the efficiency and effectiveness of an area-based tradable credit scheme (TCS) using the trip-based Macroscopic Fundamental Diagram model for the morning commute problem. In the proposed TCS, the regulator distributes initial credits to all travelers and designs a time-varying and trip length specific credit tariff. Credits are traded between travelers and the regulator via a credit market, and the credit price is determined by the demand and supply of credits. The heterogeneity of travelers is considered in terms of desired arrival time, trip length and departure-time choice preferences. The TCS is incorporated into a day-to-day modelling framework to examine the travelers' learning process, the evolution of network, and the properties of the credit market. The existence of an equilibrium solution and the uniqueness of the credit price at the equilibrium state are established analytically. Furthermore, an open-source simulation framework is developed to validate the analytical properties of the proposed TCS and compare it with alternative control strategies in terms of mobility, network performance, and social welfare. Bayesian optimization is then adopted to optimize the credit toll scheme. The numerical results demonstrate that the proposed TCS outperforms the no-control case and matches the performance of the time-of-day pricing strategy, while maintaining revenue-neutral nature.