论文标题

建模者的处理能源系统优化中复杂性的指南

A modeler's guide to handle complexity in energy systems optimization

论文作者

Kotzur, Leander, Nolting, Lars, Hoffmann, Maximilian, Groß, Theresa, Smolenko, Andreas, Priesmann, Jan, Büsing, Henrik, Beer, Robin, Kullmann, Felix, Singh, Bismark, Praktiknjo, Aaron, Stolten, Detlef, Robinius, Martin

论文摘要

确定环境和经济优化的能源系统设计和操作是复杂的。特别是,将依赖天气的可再生能源技术整合到能源系统优化模型中给计算障碍带来了新的挑战,而计算资源的进步不能仅通过计算资源来解决。因此,能源系统建模者必须每天应对其模型的复杂性,并引入各种方法来操纵潜在的数据和模型结构,并最终目的是找到最佳的解决方案。由于哪种复杂性降低方法适用于通常尚不清楚的研究问题,因此,在本文中,我们回顾了一些处理复杂性的方法。因此,我们首先分析复杂性的决定因素,并注意到,可以通过量身定制的模型设计避免许多复杂性的驱动因素。其次,我们对能量系统优化模型的系统复杂性方法进行了综述,该方法的范围从建模者执行的简单线性化到结合聚合和分解方法的复杂多级方法。基于此概述,我们为遇到计算限制的建模者制定了指南。

The determination of environmentally- and economically-optimal energy system designs and operations is complex. In particular, the integration of weather-dependent renewable energy technologies into energy system optimization models presents new challenges to computational tractability that cannot only be solved by advancements in computational resources. In consequence, energy system modelers must tackle the complexity of their models daily and introduce various methods to manipulate the underlying data and model structure, with the ultimate goal of finding optimal solutions. As which complexity reduction method is suitable for which research question is often unclear, herein we review some approaches to handling complexity. Thus, we first analyze the determinants of complexity and note that many drivers of complexity could be avoided a priori with a tailored model design. Second, we conduct a review of systematic complexity reduction methods for energy system optimization models, which can range from simple linearization performed by modelers to sophisticated multi-level approaches combining aggregation and decomposition methods. Based on this overview, we develop a guide for modelers who encounter computational limitations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源