论文标题
数值半径不平等的凸处理
A convex treatment of numerical radius inequalities
论文作者
论文摘要
在本文中,我们证明了希尔伯特太空运营商的内部产品不平等。因此,这种不等式被用来使用凸函数呈现一般数值半径不等式。新结果的应用包括获取新形式,这些新形式在文献中概括并扩展了一些知名结果,并应用于新定义的广义数值半径。 我们强调,本文中遵循的方法与文献中用于获得精制版本的方法不同。
In this article, we prove an inner product inequality for Hilbert space operators. This inequality, then, is utilized to present a general numerical radius inequality using convex functions. Applications of the new results include obtaining new forms that generalize and extend some well known results in the literature, with an application to the newly defined generalized numerical radius. We emphasize that the approach followed in this article is different from the approaches used in the literature to obtain the refined versions.