论文标题

电子基态$ g $ inteded ingaas量子点中的因素:一项原子研究

Electron ground state $g$ factor in embedded InGaAs quantum dots: An atomistic study

论文作者

Kahraman, Mustafa, Bulutay, Ceyhun

论文摘要

我们在电子$ s $ s $ shell基态$ g $ g $ g $ g $ g $ tensor的经验伪能力框架内介绍了原子计算,这些框架嵌入了授予电子限制的主机矩阵。制定了由几何形状,大小和摩尔分数变化组成的大型结构集,其中还包括一些代表性的均匀应变案例。即使对于高度各向异性的形状,也观察到张量成分显示出微不足道的差异。 $ g $ - 因子曲线与这些参数组合相关的曲线与单个通用曲线相关联,当绘制作为间隙能量的函数时,因此确认了在许多限制性条件下达成的最新断言。我们的工作以各种形状和有限的限制将其有效性扩展到合金QD,从而可以渗透到宿主矩阵上,以更现实的基础。因此,INGAAS QD中具有$ s $ shell过渡能接近1.13 eV的电子最容易受到磁场的影响。我们还表明,低含量浓度有限$ g $ - 因素可调节性,以形状或禁闭变化。这些发现可以在制造和使用$ G $ -NEAR-ZERO或其他目标$ G $值的INGAAS QD中考虑到Spintronic或Electron Spin resonance Direct量子逻辑应用程序。

We present atomistic computations within an empirical pseudopotential framework for the electron $s$-shell ground state $g$ tensor of InGaAs quantum dots (QDs) embedded to host matrices that grant electronic confinement. A large structural set consisting of geometry, size, and molar fraction variations is worked out which also includes a few representative uniform strain cases. The tensor components are observed to display insignificant discrepancies even for the highly anisotropic shapes. The family of $g$-factor curves associated with these parameter combinations coalesces to a single universal one when plotted as a function of the gap energy, thus confirming a recent assertion reached under much restrictive conditions. Our work extends its validity to alloy QDs with various shapes and finite confinement that allows for penetration to the host matrix, placing it on a more realistic basis. Accordingly, the electrons in InGaAs QDs having $s$-shell transition energies close to 1.13 eV will be least susceptible to magnetic field. We also show that low indium concentration offer limited $g$-factor tunability under shape or confinement variations. These findings can be taken into consideration in the fabrication and the use of InGaAs QDs with $g$-near-zero or other targeted $g$ values for spintronic or electron spin resonance-based direct quantum logic applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源