论文标题

锆石-4中的氢化物生长机制:合金元件分配的研究

Hydride growth mechanism in Zircaloy-4: investigation of the partitioning of alloying elements

论文作者

Mouton, Isabelle, Chang, Yanhong, Chakraborty, Poulami, Wang, Siyang, Stephenson, Leigh T., Britton, T. Ben, Gault, Baptiste

论文摘要

水基核反应堆的长期安全部分依赖于锆基核燃料的可靠性。然而,服务过程中氢的进行性进出使锆合金受到延迟的氢化物开裂。在这里,我们结合了电子反散射衍射和原子探针层析成像来研究来自感染的样品和块状α微结构中的特定微观结构特征,在用氢或氘进行电化学之前和之后,在400个小时以400个小时进行低温处理,然后在速度上进行5c cooling per niming。在低温温度下制备原子探针的标本,以避免形成伪造的氢化物。我们报告了样品热史过程中晶粒和晶界的组成演变,以及氢化物的生长在局部修饰合金的组成和结构。即使在氢化物的冷却和生长缓慢和生长之后,我们也观察到了基质中剩下的大量氘。堆叠断层在生长方面的前方形成,而SN在氢化物 - 矩阵界面和这些断层上分离。我们建议这种隔离可能有助于氢化物的进一步生长。我们的系统调查使我们能够讨论溶质分布如何影响合金寿命期间合金特性的演变。

The long-term safety of water-based nuclear reactors relies in part on the reliability of zirconium-based nuclear fuel. Yet the progressive ingress of hydrogen during service makes zirconium alloys subject to delayed hydride cracking. Here, we use a combination of electron back-scattered diffraction and atom probe tomography to investigate specific microstructural features from the as-received sample and in the blocky-alpha microstructure, before and after electrochemical charging with hydrogen or deuterium followed by a low temperature heat treatment at 400C for 5 hours followed by furnace cooling at a rate of 0. 5C per min. Specimens for atom probe were prepared at cryogenic temperature to avoid the formation of spurious hydrides. We report on the compositional evolution of grains and grain boundaries over the course of the sample's thermal history, as well as the ways the growth of the hydrides modifies locally the composition and the structure of the alloy. We observe a significant amount of deuterium left in the matrix, even after the slow cooling and growth of the hydrides. Stacking faults form ahead of the growth front and Sn segregates at the hydride-matrix interface and on these faults. We propose that this segregation may facilitate further growth of the hydride. Our systematic investigation enables us discuss how the solute distribution affects the evolution of the alloy's properties during its service lifetime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源