论文标题

使用多项式混乱扩展的随机优化

Stochastic Optimization using Polynomial Chaos Expansions

论文作者

Sahai, Tuhin

论文摘要

基于多项式混乱的方法可以在复杂模型中的输入不确定性的情况下有效地计算输出可变性。因此,它们已被广泛用于通过各种物理系统传播不确定性。这些方法也已被用来构建替代模型,以加速逆不确定性量化(从数据中推断模型参数)和构造传输图。在这项工作中,我们探讨了在不确定性存在下基于多项式混乱的方法来优化功能。这些方法可以通过平滑系统快速传播不确定性。如果随机参数的维度较低,则这些方法在蒙特卡洛采样上提供了数量级加速度的顺序。我们构建了一种基于多项式混乱的方法,用于在存在\ emph {已知}分布的随机参数的情况下优化平滑函数。通过使用正交多项式扩展优化变量,随机优化问题将减少为确定性的,该问题可为输出分布的所有矩提供估计值。因此,这种方法使人们能够避免基于计算昂贵的随机抽样方法,例如蒙特卡洛和Quasi-Monte Carlo。在这项工作中,我们开发了整体框架,得出错误界限,构建包含约束的框架,分析方法的各种特性,并在说明性示例中演示了所提出的技术。

Polynomial chaos based methods enable the efficient computation of output variability in the presence of input uncertainty in complex models. Consequently, they have been used extensively for propagating uncertainty through a wide variety of physical systems. These methods have also been employed to build surrogate models for accelerating inverse uncertainty quantification (infer model parameters from data) and construct transport maps. In this work, we explore the use of polynomial chaos based approaches for optimizing functions in the presence of uncertainty. These methods enable the fast propagation of uncertainty through smooth systems. If the dimensionality of the random parameters is low, these methods provide orders of magnitude acceleration over Monte Carlo sampling. We construct a generalized polynomial chaos based methodology for optimizing smooth functions in the presence of random parameters that are drawn from \emph{known} distributions. By expanding the optimization variables using orthogonal polynomials, the stochastic optimization problem reduces to a deterministic one that provides estimates for all moments of the output distribution. Thus, this approach enables one to avoid computationally expensive random sampling based approaches such as Monte Carlo and Quasi-Monte Carlo. In this work, we develop the overall framework, derive error bounds, construct the framework for the inclusion of constraints, analyze various properties of the approach, and demonstrate the proposed technique on illustrative examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源