论文标题
穿越您的风格:跨模式风格从音乐转移到视觉艺术
Crossing You in Style: Cross-modal Style Transfer from Music to Visual Arts
论文作者
论文摘要
音乐到视觉风格的转移是创造力实践中充满挑战而又重要的跨模式学习问题。它与传统图像样式传输问题的主要区别在于,样式信息是由音乐而不是图像提供的。假设可以通过两个域之间的语义链接将音乐功能正确映射到视觉内容,我们将以两个步骤解决音乐与视觉风格转移问题:音乐可视化和样式传输。音乐可视化网络利用带有条件生成对抗网络的编码器生成器架构来从音乐数据中生成基于图像的音乐表示。该网络与图像样式传输方法集成在一起,以完成样式传输过程。实验是在Wikiart-Imslp上进行的,Wikiart-Imslp是一个新编译的数据集,包括几十年来列出的西方音乐录音和绘画。通过利用这样的标签来学习绘画与音乐之间的语义联系,我们证明了拟议的框架可以从音乐作品中产生多种图像样式表示,这些表示形式可以揭示同一时代的某些艺术形式。主观测试结果还强调了ERA标签在改善音乐和视觉内容之间兼容性的感知质量方面的作用。
Music-to-visual style transfer is a challenging yet important cross-modal learning problem in the practice of creativity. Its major difference from the traditional image style transfer problem is that the style information is provided by music rather than images. Assuming that musical features can be properly mapped to visual contents through semantic links between the two domains, we solve the music-to-visual style transfer problem in two steps: music visualization and style transfer. The music visualization network utilizes an encoder-generator architecture with a conditional generative adversarial network to generate image-based music representations from music data. This network is integrated with an image style transfer method to accomplish the style transfer process. Experiments are conducted on WikiArt-IMSLP, a newly compiled dataset including Western music recordings and paintings listed by decades. By utilizing such a label to learn the semantic connection between paintings and music, we demonstrate that the proposed framework can generate diverse image style representations from a music piece, and these representations can unveil certain art forms of the same era. Subjective testing results also emphasize the role of the era label in improving the perceptual quality on the compatibility between music and visual content.