论文标题

固定效果二进制选择模型具有三个或以上的时间

Fixed Effects Binary Choice Models with Three or More Periods

论文作者

Davezies, Laurent, D'Haultfoeuille, Xavier, Mugnier, Martin

论文摘要

我们考虑固定效果二进制选择模型,具有固定数量的$ t $和回归器,而没有大量支持。如果时间变化的未观察到的条款是I.I.D.使用已知的分布$ f $,\ cite {Chamberlain2010}表明,当且仅当$ f $是logistic时,可以确定通用斜率参数。但是,他只考虑了他的证明$ t = 2 $。我们表明,当$ f $属于包括logit分布的家庭时,可以识别结果的结果不会概括为$ t \ geq 3 $:可以识别出通用的坡度参数。识别基于条件力矩限制。在对协变量的限制下,这些时刻条件导致相对效应的点鉴定。如果$ t = 3 $并且温和的条件保持,则基于这些条件矩限制的GMM估计器达到了半参数效率限制。最后,我们通过重新审视Brender and Drazen(2008)来说明我们的方法。

We consider fixed effects binary choice models with a fixed number of periods $T$ and regressors without a large support. If the time-varying unobserved terms are i.i.d. with known distribution $F$, \cite{chamberlain2010} shows that the common slope parameter is point identified if and only if $F$ is logistic. However, he only considers in his proof $T=2$. We show that the result does not generalize to $T\geq 3$: the common slope parameter can be identified when $F$ belongs to a family including the logit distribution. Identification is based on a conditional moment restriction. Under restrictions on the covariates, these moment conditions lead to point identification of relative effects. If $T=3$ and mild conditions hold, GMM estimators based on these conditional moment restrictions reach the semiparametric efficiency bound. Finally, we illustrate our method by revisiting Brender and Drazen (2008).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源