论文标题

光子摩尔晶格中光的定位和定位

Localization and delocalization of light in photonic moire lattices

论文作者

Wang, Peng, Zheng, Yuanlin, Chen, Xianfeng, Huang, Changming, Kartashov, Yaroslav V., Torner, Lluis, Konotop, Vladimir V., Ye, Fangwei

论文摘要

Moire晶格由两个相对旋转角覆盖的两个相同的周期结构组成。即使在日常生活中,也已经生产了Moire Lattices,例如,在碳化硅表面上耦合的石墨烯 - 二甲状腺氮化硼,石墨烯 - 石墨烯层和层上的层。一个基本问题,尚未探索的基本问题是Moire Latteres定义的潜在潜在的波浪的演变。在这里,我们在实验上创建了二维光子摩尔晶格,与其材料的前辈不同,它具有容易控制的参数和对称性,可以探索具有根本不同几何形状的结构之间的过渡:周期性的,一般的aperiodic和quasi-crystal。配备了这种实现,我们观察到在确定性线性晶格中光的定位。这种定位是基于在频带物理学的基础,与基于光学准晶体的光扩散相反,光学晶体的光扩散是安德森定位开始需要的障碍。使用可相称且不可超过的Moire模式,我们报告了光的二维定位 - 局部化转移(LDT)的首次实验证明。 Moire Lattices可能具有几乎是任意的几何形状,与Sublattices的晶体学对称组一致,因此提供了一种强大的工具来控制光模式的性质,以探索周期性和上型相位和二维摇篮现象之间的过渡物理学。

Moire lattices consist of two identical periodic structures overlaid with a relative rotation angle. Present even in everyday life, moire lattices have been also produced, e.g., with coupled graphene-hexagonal boron nitride monolayers, graphene-graphene layers, and layers on a silicon carbide surface.A fundamental question that remains unexplored is the evolution of waves in the potentials defined by the moire lattices. Here we experimentally create two-dimensional photonic moire lattices, which, unlike their material predecessors, have readily controllable parameters and symmetry allowing to explore transitions between structures with fundamentally different geometries: periodic, general aperiodic and quasi-crystal ones. Equipped with such realization, we observe localization of light in deterministic linear lattices. Such localization is based on at band physics, in contrast to previous schemes based on light difusion in optical quasicrystals,where disorder is required for the onset of Anderson localization. Using commensurable and incommensurable moire patterns, we report the first experimental demonstration of two-dimensional localization-delocalization-transition (LDT) of light. Moire lattices may feature almost arbitrary geometry that is consistent with the crystallographic symmetry groups of the sublattices, and therefore afford a powerful tool to control the properties of light patterns, to explore the physics of transitions between periodic and aperiodic phases, and two-dimensional wavepacket phenomena relevant to several areas of science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源