论文标题

Schenkman定理的概括

A generalisation of Schenkman's theorem

论文作者

Aivazidis, Stefanos, Safonova, Ina N., Skiba, Alexander N.

论文摘要

令$ g $为有限的组,让$ \ mathfrak {f} $为遗传饱和形成。我们用$ \ Mathbf {z} _ {\ Mathfrak {f}}(g)$ $ g $的所有普通子群的$ n $ of $ g $的产物,使每个主要因素$ h/k $ g $ a $ g $ to $ n $ to $ n $ is $ n $ is $ \ sathfrak $ \ mathfrak {f} $ - central in $ g $ in $ g $,is,is,is,is,\ [h/k) (g/\ mathbf {c} _ {g}(h/k))\ in \ mathfrak {f}。 \ \]子组$ a \ leq g $据说是$ \ mathfrak {f} $ - 在kegel的意义上,或$ k $ - $ \ mathfrak {f} $ - $ g $中的subormal in $ g $,如果有一个子组链\ [a = a = a_0 \ ld ld the to cain = a_0 \ leq ld \ ld \ ld \ ld \ ld \ ld \ ld \。 $ a_ {i-1} \ trianglelefteq a_ {i} $或$ a_i /(a_ {i-1})_ {a_i} \ in \ mathfrak {f} $ in \ mathfrak {f} $ for hash $ i = 1,\ ldots,n $。 In this paper, we prove the following generalisation of Schenkman's Theorem on the centraliser of the nilpotent residual of a subnormal subgroup: Let $\mathfrak{F}$ be a hereditary saturated formation and let $S$ be a $K$-$\mathfrak{F}$-subnormal subgroup of $G$.如果每个子组$ g $ of $ g $ of $ g $ g $ $ \ mathfrak {\ mathfrak {\ mathfrak {\ mathfrak {f}}(e)= 1 $ $ \ mathfrak {f} $ - $ s $的残差。

Let $G$ be a finite group and let $\mathfrak{F}$ be a hereditary saturated formation. We denote by $\mathbf{Z}_{\mathfrak{F}}(G)$ the product of all normal subgroups $N$ of $G$ such that every chief factor $H/K$ of $G$ below $N$ is $\mathfrak{F}$-central in $G$, that is, \[ (H/K) \rtimes (G/\mathbf{C}_{G}(H/K)) \in \mathfrak{F}. \]A subgroup $A \leq G$ is said to be $\mathfrak{F}$-subnormal in the sense of Kegel, or $K$-$\mathfrak{F}$-subnormal in $G$, if there is a subgroup chain \[ A = A_0 \leq A_1 \leq \ldots \leq A_n = G \] such that either $A_{i-1} \trianglelefteq A_{i}$ or $A_i / (A_{i-1})_{A_i} \in \mathfrak{F}$ for all $i = 1, \ldots , n$. In this paper, we prove the following generalisation of Schenkman's Theorem on the centraliser of the nilpotent residual of a subnormal subgroup: Let $\mathfrak{F}$ be a hereditary saturated formation and let $S$ be a $K$-$\mathfrak{F}$-subnormal subgroup of $G$. If $\mathbf{Z}_{\mathfrak{F}}(E) = 1$ for every subgroup $E$ of $G$ such that $S \leq E$ then $\mathbf{C}_{G}(D) \leq D$, where $D = S^{\mathfrak{F}}$ is the $\mathfrak{F}$-residual of $S$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源