论文标题

一维伽马模型中的Lifshitz相变

Lifshitz phase transitions in one-dimensional Gamma model

论文作者

Liu, Zi-An, Yi, Tian-Cheng, Sun, Jin-Hua, Dong, Yu-Li, You, Wen-Long

论文摘要

在本文中,我们研究了一维自旋1/2伽马模型的量子相变和磁性,该模型描述了沿锯齿链沿沿锯齿链具有强的自旋轨道耦合的边缘共享的八面体之间的非分子交换相互作用。最近的邻居和第二个邻居之间的竞争交换相互作用在无旋转费用方面稳定了半金属基态,并产生了丰富的相图,该图由三个无间隙相组成。我们发现不同的阶段的特征是动量空间中的Weyl节点的数量,而在没有对称性破坏的费米表面拓扑中的这种变化会产生各种Lifshitz的过渡,其中位于$ K =π$ Interchange的Weyl节点从I型I II类type II。 I型和II型Weyl节点的共存在II期中发现。包括并发,纠缠熵和相对熵在内的信息度量可以有效地向二阶过渡发出信号。结果表明,伽马模型可以作为描述相关电子系统中LIFSHITZ相变的准确解决模型。

In this paper, we study quantum phase transitions and magnetic properties of a one-dimensional spin-1/2 Gamma model, which describes the off-diagonal exchange interactions between edge-shared octahedra with strong spin-orbit couplings along the sawtooth chain. The competing exchange interactions between the nearest neighbors and the second neighbors stabilize semimetallic ground state in terms of spinless fermions, and give rise to a rich phase diagram, which consists of three gapless phases. We find distinct phases are characterized by the number of Weyl nodes in the momentum space, and such changes in the topology of the Fermi surface without symmetry breaking produce a variety of Lifshitz transitions, in which the Weyl nodes situating at $k=π$ interchange from type I to type II. A coexistence of type-I and type-II Weyl nodes is found in phase II. The information measures including concurrence, entanglement entropy and relative entropy can effectively signal the second-order transitions. The results indicate that the Gamma model can act as an exactly solvable model to describe Lifshitz phase transitions in correlated electron systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源