论文标题

通过分层核心分解的减少最短路径的确定性算法

Deterministic Algorithms for Decremental Shortest Paths via Layered Core Decomposition

论文作者

Chuzhoy, Julia, Saranurak, Thatchaphol

论文摘要

在减少单源最短路径(SSSP)问题中,输入是一个无向图$ g =(v,e)$,带有$ n $ vertices和$ n $ vertices和$ m $ edge in Edge删除,以及固定的源顶点$ s \ in v $。目标是维护支持最短路径查询的数据结构:给定V $中的顶点$ v \,很快将(大约)最短路径从$ s $返回到$ v $。减少全对最短路径(APSP)问题的定义类似,但是现在任何一对$ v $的顶点之间都允许最短的路径查询。自80年代以来,已经对这两个问题进行了广泛的研究,并且已经发现了近乎最新的更新时间和查询时间的算法。不幸的是,所有这些算法都是随机的,更重要的是,它们需要假设一个遗忘的对手。 我们的第一个结果是使用$ O(n^{2+o(1))$的加权图上的减少SSSP问题的确定性算法,总计更新时间,支持$(1+ε)$ - 近似最短的路径查询,并带有查询时间$ O(| p | p | p | p | p | \ cdot n^{o(1)$,$ parther。这是第一个$(1+ε)$ - 近似算法,针对自适应对手,该自适应对手支持$ O(n)$的最短路径查询,它破坏了1981年从1981年开始的$ o(mn)$ classical Algorithm和Shiloah的总更新时间限制。 我们的第二个结果是未加权图上减少APSP问题的确定性算法,该算法可实现总更新时间$ o(n^{2.5+δ})$,对于任何常数$δ> 0 $,都支持$ O(\ log log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log n)$ time;该算法可实现$ O(1)$ - 乘法和$ n^{o(1)} $ - 路径长度上的添加近似值。 APSP的所有先前算法要么假设一个遗忘的对手,要么具有$ω(n^{3})$当$ M =ω(n^{2})$时的总更新时间。

In the decremental single-source shortest paths (SSSP) problem, the input is an undirected graph $G=(V,E)$ with $n$ vertices and $m$ edges undergoing edge deletions, together with a fixed source vertex $s\in V$. The goal is to maintain a data structure that supports shortest-path queries: given a vertex $v\in V$, quickly return an (approximate) shortest path from $s$ to $v$. The decremental all-pairs shortest paths (APSP) problem is defined similarly, but now the shortest-path queries are allowed between any pair of vertices of $V$. Both problems have been studied extensively since the 80's, and algorithms with near-optimal total update time and query time have been discovered for them. Unfortunately, all these algorithms are randomized and, more importantly, they need to assume an oblivious adversary. Our first result is a deterministic algorithm for the decremental SSSP problem on weighted graphs with $O(n^{2+o(1)})$ total update time, that supports $(1+ε)$-approximate shortest-path queries, with query time $O(|P|\cdot n^{o(1)})$, where $P$ is the returned path. This is the first $(1+ε)$-approximation algorithm against an adaptive adversary that supports shortest-path queries in time below $O(n)$, that breaks the $O(mn)$ total update time bound of the classical algorithm of Even and Shiloah from 1981. Our second result is a deterministic algorithm for the decremental APSP problem on unweighted graphs that achieves total update time $O(n^{2.5+δ})$, for any constant $δ>0$, supports approximate distance queries in $O(\log\log n)$ time; the algorithm achieves an $O(1)$-multiplicative and $n^{o(1)}$-additive approximation on the path length. All previous algorithms for APSP either assume an oblivious adversary or have an $Ω(n^{3})$ total update time when $m=Ω(n^{2})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源