论文标题
一致性正规化,具有高维非对抗源引导的扰动,以进行无监督的域调整
Consistency Regularization with High-dimensional Non-adversarial Source-guided Perturbation for Unsupervised Domain Adaptation in Segmentation
论文作者
论文摘要
由于合成数据的像素级注释的低成本,对语义分割的无监督域适应性进行了深入研究。最常见的方法试图生成图像或特征模仿目标域中的分布,同时保留源域中的语义内容,以便可以使用后者的注释来训练模型。但是,这种方法在很大程度上依赖于图像转换器或在包括对抗训练(对抗训练)中训练的图像转换器或特征提取器,在适应过程中会带来额外的复杂性和不稳定。此外,这些方法主要集中于利用标记的源数据集,而未完全利用的未标记目标数据集。在本文中,我们提出了一种称为Bisida的双向样式诱导的域适应方法,该方法采用一致性正则化来有效利用未标记的目标域数据集中的信息,仅需要简单的神经样式转移模型。 Bisida不仅通过将源图像转移到目标图像的样式中,还将目标图像传输到源图像的样式中,以对未标记的目标图像执行高维扰动,这对源图像的样式进行对齐,这对于在段落任务中应用一致性正则化至关重要。广泛的实验表明,我们的Bisida在两个常用的合成到现实域的适应性基准上实现了新的最先进的方法:GTA5到CITYSCAPES和合成景观。
Unsupervised domain adaptation for semantic segmentation has been intensively studied due to the low cost of the pixel-level annotation for synthetic data. The most common approaches try to generate images or features mimicking the distribution in the target domain while preserving the semantic contents in the source domain so that a model can be trained with annotations from the latter. However, such methods highly rely on an image translator or feature extractor trained in an elaborated mechanism including adversarial training, which brings in extra complexity and instability in the adaptation process. Furthermore, these methods mainly focus on taking advantage of the labeled source dataset, leaving the unlabeled target dataset not fully utilized. In this paper, we propose a bidirectional style-induced domain adaptation method, called BiSIDA, that employs consistency regularization to efficiently exploit information from the unlabeled target domain dataset, requiring only a simple neural style transfer model. BiSIDA aligns domains by not only transferring source images into the style of target images but also transferring target images into the style of source images to perform high-dimensional perturbation on the unlabeled target images, which is crucial to the success in applying consistency regularization in segmentation tasks. Extensive experiments show that our BiSIDA achieves new state-of-the-art on two commonly-used synthetic-to-real domain adaptation benchmarks: GTA5-to-CityScapes and SYNTHIA-to-CityScapes.