论文标题

猜想:$ \ mathbb {q} $的椭圆表面的100%具有等级零

Conjecture: 100% of elliptic surfaces over $\mathbb{Q}$ have rank zero

论文作者

Cowan, Alex

论文摘要

基于出现在Nagao,Rosen和Silverman的工作中的椭圆表面等级的等式,我们猜想,当通过其Weierstrass方程的系数大小时,100%的椭圆表面的排名为$ 0 $,并提出了这种概述的术语,并呈现了这种较低的术语。然后,我们讨论如何从对某些$ l $ functions的理解或对表面的本地行为的理解。最后,我们对有限领域的椭圆表面等级做出了猜想,并强调了一些支持它的实验证据。

Based on an equation for the rank of an elliptic surface over $\mathbb{Q}$ which appears in the work of Nagao, Rosen, and Silverman, we conjecture that 100% of elliptic surfaces have rank $0$ when ordered by the size of the coefficients of their Weierstrass equations, and present a probabilistic heuristic to justify this conjecture. We then discuss how it would follow from either understanding of certain $L$-functions, or from understanding of the local behaviour of the surfaces. Finally, we make a conjecture about ranks of elliptic surfaces over finite fields, and highlight some experimental evidence supporting it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源