论文标题

基于事件的基于电压的学习规则中突触的更新

Event-based update of synapses in voltage-based learning rules

论文作者

Stapmanns, Jonas, Hahne, Jan, Helias, Moritz, Bolten, Matthias, Diesmann, Markus, Dahmen, David

论文摘要

由于神经元尖峰的点样性质,有效的神经网络模拟器通常采用基于事件的模拟方案进行突触。然而,除了突触前和突触后尖峰时间外,许多类型的突触可塑性依赖于突触后细胞的膜电位。因此,突触需要连续的信息来更新其强度,这是先验需要以时间驱动方式进行连续更新的。后者将模拟的缩放限制为现实的皮质网络大小和相关的学习时间尺度。在这里,我们得出了两个有效的算法,用于归档突触后膜电位,均与基于基于事件的突触更新的现代模拟引擎兼容。从理论上讲,我们将两种算法与时间驱动的突触更新方案进行对比,以分析记忆和计算方面的优势。我们进一步在尖峰神经网络模拟器巢中介绍了两个基于原型电压的可塑性规则:Clopath规则和Urbanczik-Senn规则。对于这两个规则,这两种基于事件的算法都大大优于时间驱动方案。根据为可塑性存储的数据量,这在规则之间存在很大的不同之处,可以通过压缩或采样有关膜电位的信息来实现强大的性能提高。我们关于与信息归档有关的计算效率的结果为设计规则设计提供了指南,以使它们在大规模网络中实际上可用。

Due to the point-like nature of neuronal spiking, efficient neural network simulators often employ event-based simulation schemes for synapses. Yet many types of synaptic plasticity rely on the membrane potential of the postsynaptic cell as a third factor in addition to pre- and postsynaptic spike times. Synapses therefore require continuous information to update their strength which a priori necessitates a continuous update in a time-driven manner. The latter hinders scaling of simulations to realistic cortical network sizes and relevant time scales for learning. Here, we derive two efficient algorithms for archiving postsynaptic membrane potentials, both compatible with modern simulation engines based on event-based synapse updates. We theoretically contrast the two algorithms with a time-driven synapse update scheme to analyze advantages in terms of memory and computations. We further present a reference implementation in the spiking neural network simulator NEST for two prototypical voltage-based plasticity rules: the Clopath rule and the Urbanczik-Senn rule. For both rules, the two event-based algorithms significantly outperform the time-driven scheme. Depending on the amount of data to be stored for plasticity, which heavily differs between the rules, a strong performance increase can be achieved by compressing or sampling of information on membrane potentials. Our results on computational efficiency related to archiving of information provide guidelines for the design of learning rules in order to make them practically usable in large-scale networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源