论文标题
padé近似值以及Gluon和Ghost Expagors的分析结构
Padé Approximants and the analytic structure of the gluon and ghost propagators
论文作者
论文摘要
在量子场理论中,2点相关函数的分析结构,即传播器,封闭了有关相应量子的属性的信息,尤其是当它们被限制时。但是,在量子染色体动力学(QCD)中,我们只能在该理论的扰动图中具有分析解决方案。对于非扰动繁殖器,一个人求助于QCD的数值解决方案,该QCD访问欧几里得动量空间的特定区域,例如,例如通过晶格上的Monte Carlo模拟计算的QCD。在目前的工作中,我们依靠Padé近似值(PA)来近似Gluon和Ghost Expagors的数值数据,并研究其分析结构。在第一阶段,在重现函数的属性(以其分析结构为重点)时,探索了使用PA的优势。测试了PA序列的使用中用于传播器的扰动溶液,并进行了残基分析以帮助鉴定分析结构。提出了一种用于将PA近似于离散点的技术,并针对某些测试数据集进行了测试。最后,该方法应用于通过晶格模拟获得的Landau量规格和幽灵传播器。结果确定了与该理论的红外结构相关的Gluon传播器的一对复杂杆。这与观察到限制的理论中复杂动量的奇异性存在一致。关于幽灵传播器,确定了$ p^2 = 0 $的极点。对于两个繁殖者,都在实际的负$ p^2 $轴上发现了分支切割,该轴是在高动量上恢复扰动分析。
In a Quantum Field Theory, the analytic structure of the 2-points correlation functions, ie the propagators, encloses information about the properties of the corresponding quanta, particularly if they are or not confined. However, in Quantum Chromodynamics (QCD), we can only have an analytic solution in a perturbative picture of the theory. For the non-perturbative propagators, one resorts on numerical solutions of QCD that accesses specific regions of the Euclidean momentum space, as, for example, those computed via Monte Carlo simulations on the lattice. In the present work, we rely on Padé Approximants (PA) to approximate the numerical data for the gluon and ghost propagators, and investigate their analytic structures. In a first stage, the advantages of using PAs are explored when reproducing the properties of a function, focusing on its analytic structure. The use of PA sequences is tested for the perturbative solutions of the propagators, and a residue analysis is performed to help in the identification of the analytic structure. A technique used to approximate a PA to a discrete set of points is proposed and tested for some test data sets. Finally, the methodology is applied to the Landau gauge gluon and ghost propagators, obtained via lattice simulations. The results identify a conjugate pair of complex poles for the gluon propagator, that is associated with the infrared structure of the theory. This is in line with the presence of singularities for complex momenta in theories where confinement is observed. Regarding the ghost propagator, a pole at $p^2=0$ is identified. For both propagators, a branch cut is found on the real negative $p^2$-axis, which recovers the perturbative analysis at high momenta.