论文标题

非标准有限组的完整类型合并

Complete type amalgamation for non-standard finite groups

论文作者

Martin-Pizarro, Amador, Palacín, Daniel

论文摘要

我们扩展了先前在Hrushovski的稳定器定理上的工作,并证明了Pillay-Scanlon-Wagner在三种类型的产品上的众所周知的衡量理论版本。这概括了Gowers对三组产品的结果,并产生了Quasirandom组现有渐近结果的模型理论证明。我们还获得了Roth定理的模型理论证明,内容涉及在适当可定义的可融合基团中的正密度子集的长度$ 3 $的存在,例如无参与的可数符合的Abelian群体和有限的Abelian Abelian obelian obs Odd Order的无互动和超级企业。

We extend previous work on Hrushovski's stabilizer's theorem and prove a measure-theoretic version of a well-known result of Pillay-Scanlon-Wagner on products of three types. This generalizes results of Gowers on products of three sets and yields model-theoretic proofs of existing asymptotic results for quasirandom groups. We also obtain a model-theoretic proof of Roth's theorem on the existence of arithmetic progressions of length $3$ for subsets of positive density in suitable definably amenable groups, such as countable amenable abelian groups without involutions and ultraproducts of finite abelian groups of odd order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源