论文标题

SECDD:远程训练神经网络的高效且安全的方法

SecDD: Efficient and Secure Method for Remotely Training Neural Networks

论文作者

Sucholutsky, Ilia, Schonlau, Matthias

论文摘要

我们利用通常认为是深度学习算法的最差品质 - 高计算成本,对大数据的需求,无解释性,对超参数选择,过度拟合和对对抗性扰动的脆弱性的高度依赖 - 以创建一种对远程和高效培训的方法,以远程和高效的培训,以远程部署的神经网络越来越多。

We leverage what are typically considered the worst qualities of deep learning algorithms - high computational cost, requirement for large data, no explainability, high dependence on hyper-parameter choice, overfitting, and vulnerability to adversarial perturbations - in order to create a method for the secure and efficient training of remotely deployed neural networks over unsecured channels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源