论文标题

意大利统治和完美的意大利统治在Sierpinski图上

Italian Domination and Perfect Italian Domination on Sierpinski Graphs

论文作者

Varghese, Jismy, V, Anu, S, Aparna Lakshmanan

论文摘要

图G的意大利主导函数(IDF)是一个函数$ f:v(g)\ rightarrow \ {0,1,2 \} $,可满足每一个$ v $ in v $ in $ f(v)= 0 $,$ \ sum_ sum_ sum_ {u \ in n(v)in(v)f(v)f(v)f(u)ins y y y y y y d y d p a y d y d p a n v $的条件。 \ sum_ {v \ in V} f(v)$和意大利统治号码,$γ_i(g)$,是IDF的最小重量。 IDF是$ g $的完美意大利主导功能(PID),如果对于$ f(g)$中的每个顶点$ v \,$ f(v)= 0 $ $ f $ $ f $分配给$ v $的邻居的总权重恰好是2,即$ u $的所有邻居都为$ f $ f $ f $ v $ v $ v $ v $ v $ v $ v $ v $ v $ v $ v $ v $ v $ v $ v(verte $ v) $ v $和$ w $,$ f(v)= f(w)= 1 $。 PID函数的重量为$ f(v)= \ sum_ {u \ in V(g)} f(u)$。 $ g $的完美意大利统治数,由$γ^{p} _ {i}(g)表示,$是$ g $的PID功能的最小重量。在本文中,我们获得了意大利的统治号码和Sierpiński图的完美意大利统治数。

An Italian dominating function (IDF) of a graph G is a function $ f: V(G) \rightarrow \{0,1,2\} $ satisfying the condition that for every $ v\in V $ with $ f(v) = 0$, $\sum_{ u\in N(v)} f(u) \geq 2. $ The weight of an IDF on $G$ is the sum $ f(V)= \sum_{v\in V}f(v) $ and the Italian domination number, $ γ_I(G) $, is the minimum weight of an IDF. An IDF is a perfect Italian dominating function (PID) on $G$, if for every vertex $ v \in V(G) $ with $ f(v) = 0 $ the total weight assigned by $f$ to the neighbours of $ v $ is exactly 2, i.e., all the neighbours of $u$ are assigned the weight 0 by $f$ except for exactly one vertex $v$ for which $ f(v) = 2 $ or for exactly two vertices $v$ and $w$ for which $ f(v) = f(w) = 1 $. The weight of a PID- function is $f(V)=\sum_{u \in V(G)}f(u)$. The perfect Italian domination number of $G$, denoted by $ γ^{p}_{I}(G), $ is the minimum weight of a PID-function of $G$. In this paper we obtain the Italian domination number and perfect Italian domination number of Sierpiński graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源