论文标题

通过重组选择策略简化加强功能选择

Simplifying Reinforced Feature Selection via Restructured Choice Strategy of Single Agent

论文作者

Zhao, Xiaosa, Liu, Kunpeng, Fan, Wei, Jiang, Lu, Zhao, Xiaowei, Yin, Minghao, Fu, Yanjie

论文摘要

功能选择旨在选择特征子集以优化下游预测任务的性能。最近,通过为每个功能创建代理以选择或取消选择相应的功能,已引入多代理增强功能选择(MARFS)以自动化特征选择。尽管Marfs享有选择过程的自动化,但MARF不仅遭受数据复杂性,而且在内容和维度方面,还遭受了有关代理数量的计算成本。提出的关注导致了一个新的研究问题:我们可以简化强化学习环境下代理的选择过程,以提高特征选择的效率和成本吗?为了解决这个问题,我们开发了一种与重组选择策略集成的单格增强功能选择方法。具体而言,重组的选择策略包括:1)我们仅利用一个代理来处理多个功能的选择任务,而不是使用多个代理。 2)我们开发了一种扫描方法,以使单个代理在每轮扫描中做出多次选择/取消选择决策。 3)我们利用与特征的预测标签相关性,以优先考虑代理的扫描顺序。 4)我们提出了一种与特征的编码索引信息集成的卷积自动编码算法,以改善状态表示。 5)我们设计了一个奖励方案,该方案考虑了预测准确性和功能冗余,以促进探索过程。最后,我们提出了广泛的实验结果,以证明该方法的效率和有效性。

Feature selection aims to select a subset of features to optimize the performances of downstream predictive tasks. Recently, multi-agent reinforced feature selection (MARFS) has been introduced to automate feature selection, by creating agents for each feature to select or deselect corresponding features. Although MARFS enjoys the automation of the selection process, MARFS suffers from not just the data complexity in terms of contents and dimensionality, but also the exponentially-increasing computational costs with regard to the number of agents. The raised concern leads to a new research question: Can we simplify the selection process of agents under reinforcement learning context so as to improve the efficiency and costs of feature selection? To address the question, we develop a single-agent reinforced feature selection approach integrated with restructured choice strategy. Specifically, the restructured choice strategy includes: 1) we exploit only one single agent to handle the selection task of multiple features, instead of using multiple agents. 2) we develop a scanning method to empower the single agent to make multiple selection/deselection decisions in each round of scanning. 3) we exploit the relevance to predictive labels of features to prioritize the scanning orders of the agent for multiple features. 4) we propose a convolutional auto-encoder algorithm, integrated with the encoded index information of features, to improve state representation. 5) we design a reward scheme that take into account both prediction accuracy and feature redundancy to facilitate the exploration process. Finally, we present extensive experimental results to demonstrate the efficiency and effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源