论文标题
基于学习的巨大波束形成
Learning-Based Massive Beamforming
论文作者
论文摘要
在无线网络中,开发具有强大实时和高效率的资源分配算法一直是当务之急。常规的基于优化的迭代资源分配算法通常会遭受缓慢的收敛性,尤其是对于大量的多输入 - 型号输出(MIMO)波束形成问题。本文研究了基于学习的多用户MIMO网络的有效大量波束形成方法。在两个方面,被认为是巨大的波束形成问题是具有挑战性的。首先,如果有大量天线,则要学习的波束形成矩阵是相当高的。其次,目标通常是时间变化的,并且由于某些通信要求而无法修复解决方案空间。所有这些挑战使学习表现为大规模的边界成员成为极其艰巨的任务。在本文中,通过利用最受欢迎的WMMSE波束形成解决方案的结构,我们建议使用具有特定网络结构和输入/输出设计的特定设计的监督和无监督的学习方案,提出了卷积大规模波束形成神经网络(CMBNN)。数值结果证明了所提出的CMBNN在运行时间和系统吞吐量方面的功效。
Developing resource allocation algorithms with strong real-time and high efficiency has been an imperative topic in wireless networks. Conventional optimization-based iterative resource allocation algorithms often suffer from slow convergence, especially for massive multiple-input-multiple-output (MIMO) beamforming problems. This paper studies learning-based efficient massive beamforming methods for multi-user MIMO networks. The considered massive beamforming problem is challenging in two aspects. First, the beamforming matrix to be learned is quite high-dimensional in case with a massive number of antennas. Second, the objective is often time-varying and the solution space is not fixed due to some communication requirements. All these challenges make learning representation for massive beamforming an extremely difficult task. In this paper, by exploiting the structure of the most popular WMMSE beamforming solution, we propose convolutional massive beamforming neural networks (CMBNN) using both supervised and unsupervised learning schemes with particular design of network structure and input/output. Numerical results demonstrate the efficacy of the proposed CMBNN in terms of running time and system throughput.