论文标题

在化学演化的原球盘中组装的热木星气氛的组成

The composition of hot Jupiter atmospheres assembled within chemically evolved protoplanetary discs

论文作者

Notsu, Shota, Eistrup, Christian, Walsh, Catherine, Nomura, Hideko

论文摘要

原月经碟片中丰富的氧和含碳分子的雪线的径向依赖性位置将导致气体和冰中C/O比的系统径向变化。提出这种变化是气体巨星形成位置的示踪剂。但是,盘化学可能会影响气体和冰中的C/O比,从而有可能消除天然气大气中的雪线的化学指纹。我们使用从圆盘中平面的化学动力学模型中提取的元素丰度来计算热木星大气的分子组成,在该模型中,我们的初始丰度和电离速率变化了。这些模型可以预测可能的气氛多样性,而不是仅使用雪线元素比的预测。如先前的工作所发现的那样,随着c/o比超过太阳值,ch $ _ {4} $的混合比在较低的气氛中增加,而c $ _ {2} $ h $ _ {2} $的混合比主要在上层气氛中增加。 h $ _ {2} $ o的混合比相应地降低。我们发现,C/O $> 1 $的热木星只能在Co $ _ {2} $和CH $ _ {4} $雪线之间形成。此外,它们只能在具有完全遗传的星际丰度以及化学无关的圆盘中形成。因此,除非有效地通过鹅卵石漂移到ch $ _ {4} $雪地是一种常见现象,否则富含碳的行星可能很少见。我们预测C/O比和元素丰度的组合可以约束相对于雪线位置的气体巨型行星形成位置,并且可以提供对盘化学史的见解。

The radial-dependent positions of snowlines of abundant oxygen- and carbon-bearing molecules in protoplanetary discs will result in systematic radial variations in the C/O ratios in the gas and ice. This variation is proposed as a tracer of the formation location of gas-giant planets. However, disc chemistry can affect the C/O ratios in the gas and ice, thus potentially erasing the chemical fingerprint of snowlines in gas-giant atmospheres. We calculate the molecular composition of hot Jupiter atmospheres using elemental abundances extracted from a chemical kinetics model of a disc midplane where we have varied the initial abundances and ionization rates. The models predict a wider diversity of possible atmospheres than those predicted using elemental ratios from snowlines only. As found in previous work, as the C/O ratio exceeds the solar value, the mixing ratio of CH$_{4}$ increases in the lower atmosphere, and those of C$_{2}$H$_{2}$ and HCN increase mainly in the upper atmosphere. The mixing ratio of H$_{2}$O correspondingly decreases. We find that hot Jupiters with C/O$>1$ can only form between the CO$_{2}$ and CH$_{4}$ snowlines. Moreover, they can only form in a disc which has fully inherited interstellar abundances, and where negligible chemistry has occurred. Hence, carbon-rich planets are likely rare, unless efficient transport of hydrocarbon-rich ices via pebble drift to within the CH$_{4}$ snowline is a common phenomenon. We predict combinations of C/O ratios and elemental abundances that can constrain gas-giant planet formation locations relative to snowline positions, and that can provide insight into the disc chemical history.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源