论文标题
与生成先验的关节ptycho-tomography
Joint ptycho-tomography with deep generative priors
论文作者
论文摘要
联合Ptycho-Tomography是一个强大的计算成像框架,可恢复3D对象的折射特性,同时放松在常规阶段检索中常见的探针重叠的要求。我们使用增强的拉格朗日方案来制定约束优化问题,并采用乘数的交替方向方法(ADMM)作为联合解决方案。 ADMM允许将问题分为较小,计算上更有效的子问题:Pychographic阶段检索,层析成像重建和解决方案的正则化。我们通过基于机器学习的一般Denoising Operator替换正规化子问题来扩展使用插件(PNP)DENOISER的ADMM框架。尽管PNP框架可以整合诸如Denoising Operators之类的博学先验,但对DeNoiser Prior的调整仍然充满挑战。为了克服这一挑战,我们提出了一个DeNoiser参数,以控制Denoiser的效果并加速溶液。在我们的模拟中,我们证明了我们提出的使用参数调整和学习先验的框架在有限和嘈杂的测量数据下产生高质量的重建。
Joint ptycho-tomography is a powerful computational imaging framework to recover the refractive properties of a 3D object while relaxing the requirements for probe overlap that is common in conventional phase retrieval. We use an augmented Lagrangian scheme for formulating the constrained optimization problem and employ an alternating direction method of multipliers (ADMM) for the joint solution. ADMM allows the problem to be split into smaller and computationally more efficient subproblems: ptychographic phase retrieval, tomographic reconstruction, and regularization of the solution. We extend our ADMM framework with plug-and-play (PnP) denoisers by replacing the regularization subproblem with a general denoising operator based on machine learning. While the PnP framework enables integrating such learned priors as denoising operators, tuning of the denoiser prior remains challenging. To overcome this challenge, we propose a denoiser parameter to control the effect of the denoiser and to accelerate the solution. In our simulations, we demonstrate that our proposed framework with parameter tuning and learned priors generates high-quality reconstructions under limited and noisy measurement data.