论文标题

3D骨盆CT图像上前列腺和器官风险的半监督语义分割

Semi-supervised Semantic Segmentation of Prostate and Organs-at-Risk on 3D Pelvic CT Images

论文作者

Zhang, Zhuangzhuang, Zhao, Tianyu, Gay, Hiram, Sun, Baozhou, Zhang, Weixiong

论文摘要

自动分割可以通过节省手动轮廓努力并减少观察者和观察者间变化来帮助放射治疗计划。深度学习方法的最新发展通过显着提高性能,改善了医学数据处理,包括语义细分。但是,培训有效的深度学习模型通常需要大量高质量的标签数据,这些数据通常是昂贵的。我们为3D骨盆CT图像语义分割开发了一种新型的半监督对抗深度学习方法。与监督的深度学习方法不同,新方法可以利用注释和未经通知的数据进行培训。它通过使用生成对抗网络(GAN)通过数据增强方案生成未注销的合成数据。我们将新方法应用于雄性骨盆CT图像中的多个器官,其中无注释的CT图像和GAN合成的未经注销的图像用于半监督学习。通过三个指标评估的实验结果(骰子相似性系数,平均Hausdorff距离和平均表面Hausdorff距离)表明,新方法可以实现可相当的性能,而具有更少的带注释图像或具有相同数量的注释数据,以优于现有的现有的尚未实现的现有方法。

Automated segmentation can assist radiotherapy treatment planning by saving manual contouring efforts and reducing intra-observer and inter-observer variations. The recent development of deep learning approaches has revoluted medical data processing, including semantic segmentation, by dramatically improving performance. However, training effective deep learning models usually require a large amount of high-quality labeled data, which are often costly to collect. We developed a novel semi-supervised adversarial deep learning approach for 3D pelvic CT image semantic segmentation. Unlike supervised deep learning methods, the new approach can utilize both annotated and un-annotated data for training. It generates un-annotated synthetic data by a data augmentation scheme using generative adversarial networks (GANs). We applied the new approach to segmenting multiple organs in male pelvic CT images, where CT images without annotations and GAN-synthesized un-annotated images were used in semi-supervised learning. Experimental results, evaluated by three metrics (Dice similarity coefficient, average Hausdorff distance, and average surface Hausdorff distance), showed that the new method achieved either comparable performance with substantially fewer annotated images or better performance with the same amount of annotated data, outperforming the existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源