论文标题
具有几何结构保存的广义聚类和多势学习
Generalized Clustering and Multi-Manifold Learning with Geometric Structure Preservation
论文作者
论文摘要
尽管基于流形的聚类已成为一个流行的研究主题,但我们观察到这些作品省略了一个重要因素,即确定的聚类损失可能会破坏潜在空间的本地和全球结构。在本文中,我们提出了一个新型的广义聚类和多序列学习(GCML)框架,并具有用于通用数据的几何结构保存,即不限于2-D图像数据,并且在语音,文本和生物学领域中具有广泛的应用。在提议的框架中,在集群损失的指导下,在潜在空间中进行了歧管聚类。为了克服以聚类为导向的损失可能恶化潜在空间的几何结构的问题,提出了一个等距损失,用于在局部保存元素内结构,并在全球范围内对曼佛结构进行排名损失。广泛的实验结果表明,在定性可视化和定量指标方面,GCML表现出卓越的性能,这表明了保留几何结构的有效性。
Though manifold-based clustering has become a popular research topic, we observe that one important factor has been omitted by these works, namely that the defined clustering loss may corrupt the local and global structure of the latent space. In this paper, we propose a novel Generalized Clustering and Multi-manifold Learning (GCML) framework with geometric structure preservation for generalized data, i.e., not limited to 2-D image data and has a wide range of applications in speech, text, and biology domains. In the proposed framework, manifold clustering is done in the latent space guided by a clustering loss. To overcome the problem that the clustering-oriented loss may deteriorate the geometric structure of the latent space, an isometric loss is proposed for preserving intra-manifold structure locally and a ranking loss for inter-manifold structure globally. Extensive experimental results have shown that GCML exhibits superior performance to counterparts in terms of qualitative visualizations and quantitative metrics, which demonstrates the effectiveness of preserving geometric structure.