论文标题
社会机器人技术中的强化学习方法
Reinforcement Learning Approaches in Social Robotics
论文作者
论文摘要
本文调查了社会机器人技术中的强化学习方法。强化学习是决策问题的框架,在该问题中,代理商通过反复试验与环境发现最佳行为进行互动。由于相互作用是增强学习和社会机器人技术的关键组成部分,因此它可以是与物理体现的社会机器人进行现实世界相互作用的良好方法。该论文的范围特别集中在包括社会物理机器人和与用户的现实世界机器人相互作用的研究上。我们对社会机器人技术中的强化学习方法进行了详尽的分析。除了调查外,我们还根据使用的方法和奖励机制的设计对存在的强化学习方法进行分类。此外,由于沟通能力是社会机器人的重要特征,因此我们讨论并根据用于奖励配方的通讯媒介进行了论文。考虑到设计奖励功能的重要性,我们还根据奖励性质提供了论文的分类。该分类包括三个主要主题:交互式增强学习,内在动机的方法和任务绩效驱动的方法。强化学习在社会机器人技术中的好处和挑战,关于它们是否使用主观和算法措施的论文评估方法,在现实世界中的增强学习挑战和拟议的解决方案的观点中,讨论的讨论以及待探索的观点,包括到目前为止受到较少关注的方法。因此,本文旨在成为有兴趣在此特定研究领域使用和应用强化学习方法的研究人员的起点。
This article surveys reinforcement learning approaches in social robotics. Reinforcement learning is a framework for decision-making problems in which an agent interacts through trial-and-error with its environment to discover an optimal behavior. Since interaction is a key component in both reinforcement learning and social robotics, it can be a well-suited approach for real-world interactions with physically embodied social robots. The scope of the paper is focused particularly on studies that include social physical robots and real-world human-robot interactions with users. We present a thorough analysis of reinforcement learning approaches in social robotics. In addition to a survey, we categorize existent reinforcement learning approaches based on the used method and the design of the reward mechanisms. Moreover, since communication capability is a prominent feature of social robots, we discuss and group the papers based on the communication medium used for reward formulation. Considering the importance of designing the reward function, we also provide a categorization of the papers based on the nature of the reward. This categorization includes three major themes: interactive reinforcement learning, intrinsically motivated methods, and task performance-driven methods. The benefits and challenges of reinforcement learning in social robotics, evaluation methods of the papers regarding whether or not they use subjective and algorithmic measures, a discussion in the view of real-world reinforcement learning challenges and proposed solutions, the points that remain to be explored, including the approaches that have thus far received less attention is also given in the paper. Thus, this paper aims to become a starting point for researchers interested in using and applying reinforcement learning methods in this particular research field.