论文标题

时空混合图卷积网络,用于电信网络中的流量预测

Spatio-Temporal Hybrid Graph Convolutional Network for Traffic Forecasting in Telecommunication Networks

论文作者

Kalander, Marcus, Zhou, Min, Zhang, Chengzhi, Yi, Hanling, Pan, Lujia

论文摘要

电信网络在现代社会中起着至关重要的作用。随着5G网络的到来,这些系统变得更加多样化,集成和聪明。流量预测是这种系统中的关键组成部分之一,但是由于复杂的时空依赖性,它尤其具有挑战性。在这项工作中,我们从蜂窝网络及其基站之间的相互作用的方面考虑了这个问题。我们根据从人口稠密的大都市地区收集的数据彻底研究细胞网络流量的特征,并阐明了依赖性复杂性。具体而言,我们观察到流量既显示动态和静态的空间依赖性以及各种环状时间模式。为了解决这些复杂性,我们提出了一种有效的基于深度学习的方法,即时空混合图卷积网络(STHGCN)。它采用GRU来对时间依赖性进行建模,同时从三个角度通过混合GCN捕获复杂的空间依赖性:空间接近,功能相似性和最近的趋势相似性。我们对从电信网络收集的现实世界流量数据集进行了广泛的实验。我们的实验结果证明了所提出的模型的优势,因为它始终优于经典方法和最新的深度学习模型,同时更加稳定和稳定。

Telecommunication networks play a critical role in modern society. With the arrival of 5G networks, these systems are becoming even more diversified, integrated, and intelligent. Traffic forecasting is one of the key components in such a system, however, it is particularly challenging due to the complex spatial-temporal dependency. In this work, we consider this problem from the aspect of a cellular network and the interactions among its base stations. We thoroughly investigate the characteristics of cellular network traffic and shed light on the dependency complexities based on data collected from a densely populated metropolis area. Specifically, we observe that the traffic shows both dynamic and static spatial dependencies as well as diverse cyclic temporal patterns. To address these complexities, we propose an effective deep-learning-based approach, namely, Spatio-Temporal Hybrid Graph Convolutional Network (STHGCN). It employs GRUs to model the temporal dependency, while capturing the complex spatial dependency through a hybrid-GCN from three perspectives: spatial proximity, functional similarity, and recent trend similarity. We conduct extensive experiments on real-world traffic datasets collected from telecommunication networks. Our experimental results demonstrate the superiority of the proposed model in that it consistently outperforms both classical methods and state-of-the-art deep learning models, while being more robust and stable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源