论文标题
年度亮度模拟深度神经网络方法
Deep Neural Network Approach for Annual Luminance Simulations
论文作者
论文摘要
年度亮度图为乘员的视觉舒适性,偏好和感知提供了有意义的评估。但是,获取长期亮度图需要劳动密集型且耗时的模拟或不切实际的长期现场测量。本文提出了一种新型的数据驱动机器学习方法,使年度基于亮度的评估更加有效和易于访问。该方法基于通过使用深神经网络(DNN)来预测有限数量的高点高动态范围图像的年度亮度图。使用全景视图,因为它们可以进行后处理来研究多个视图方向。提出的DNN模型可以忠实地预测30分钟内的三个选项之一的高质量年度全景亮度图:a)跨年度5%的时间点亮度图像,当时均匀分布在白天时,b)一个月的每小时图像在均等的一年中均连续或连续收集了一年的年度(8%)(8%)(8%)(8%););或c)在春分,夏季和冬季冬至(一年2.5%)附近收集的每小时9天的每小时数据都足以预测一年中剩余时间的亮度图。 DNN预测使用一系列定量和定性指标对Radiance(RPICT)渲染进行了验证。最有效的预测是通过在春季,春分和冬季冬季收集的9天的每小时数据来实现的。结果清楚地表明,从业人员和研究人员可以使用拟议的DNN工作流程有效地将基于长期亮度的指标纳入设计和研究过程中。
Annual luminance maps provide meaningful evaluations for occupants' visual comfort, preferences, and perception. However, acquiring long-term luminance maps require labor-intensive and time-consuming simulations or impracticable long-term field measurements. This paper presents a novel data-driven machine learning approach that makes annual luminance-based evaluations more efficient and accessible. The methodology is based on predicting the annual luminance maps from a limited number of point-in-time high dynamic range imagery by utilizing a deep neural network (DNN). Panoramic views are utilized, as they can be post-processed to study multiple view directions. The proposed DNN model can faithfully predict high-quality annual panoramic luminance maps from one of the three options within 30 minutes training time: a) point-in-time luminance imagery spanning 5% of the year, when evenly distributed during daylight hours, b) one-month hourly imagery generated or collected continuously during daylight hours around the equinoxes (8% of the year); or c) 9 days of hourly data collected around the spring equinox, summer and winter solstices (2.5% of the year) all suffice to predict the luminance maps for the rest of the year. The DNN predicted high-quality panoramas are validated against Radiance (RPICT) renderings using a series of quantitative and qualitative metrics. The most efficient predictions are achieved with 9 days of hourly data collected around the spring equinox, summer and winter solstices. The results clearly show that practitioners and researchers can efficiently incorporate long-term luminance-based metrics over multiple view directions into the design and research processes using the proposed DNN workflow.