论文标题
温暖启动的量子优化
Warm-starting quantum optimization
论文作者
论文摘要
对于整数编程和组合优化问题,对量子算法的兴趣越来越多。此类问题的经典求解器采用了放松,这些求解者用连续的变量代替二进制变量,例如以高维矩阵值问题(半决赛编程)的形式。在独特的游戏猜想下,这些放松通常可以在多项式时间内提供经典可用的最佳性能比率。在这里,我们讨论了如何使用与组合优化问题的松弛解决方案相对应的初始状态进行温暖量子优化,以及如何分析相关量子算法的性质。特别是,这允许量子算法继承经典算法的性能保证。我们在投资组合优化的背景下说明了这一点,其中我们的结果表明,在低深度下,暖量子近似优化算法(QAOA)特别有益。同样,用于最大问题的递归QAOA显示,当Goemans-Williamson随机舍入的随机圆形随机圆形在温暖的开始时使用了随机重量的完全连接图所获得的切割的大小。将相同的想法应用于其他随机连接方案和优化问题是很简单的。
There is an increasing interest in quantum algorithms for problems of integer programming and combinatorial optimization. Classical solvers for such problems employ relaxations, which replace binary variables with continuous ones, for instance in the form of higher-dimensional matrix-valued problems (semidefinite programming). Under the Unique Games Conjecture, these relaxations often provide the best performance ratios available classically in polynomial time. Here, we discuss how to warm-start quantum optimization with an initial state corresponding to the solution of a relaxation of a combinatorial optimization problem and how to analyze properties of the associated quantum algorithms. In particular, this allows the quantum algorithm to inherit the performance guarantees of the classical algorithm. We illustrate this in the context of portfolio optimization, where our results indicate that warm-starting the Quantum Approximate Optimization Algorithm (QAOA) is particularly beneficial at low depth. Likewise, Recursive QAOA for MAXCUT problems shows a systematic increase in the size of the obtained cut for fully connected graphs with random weights, when Goemans-Williamson randomized rounding is utilized in a warm start. It is straightforward to apply the same ideas to other randomized-rounding schemes and optimization problems.