论文标题

单距离X射线相对比断层扫描的约束非线性相检索

Constrained Non-Linear Phase Retrieval for Single Distance X-ray Phase Contrast Tomography

论文作者

Mohan, K. Aditya, Parkinson, Dilworth Y., Cuadra, Jefferson A.

论文摘要

X射线相对比断层扫描(XPCT)被广泛用于X射线吸收指数弱对比的物体的3D成像,但在折射率下降中的对比度很强。为了重建使用XPCT成像的对象,首先使用相位检索算法来估计X射线相位投影,即在每个视图下,是折射率降低的2D投影。相后,使用算法(例如过滤后的投影(FBP)),从相影量(FBP)折射索引减少了重建。实际上,通常通过将其近似为线性反问题来解决相位检索。但是,当违反近似条件时,这种线性近似通常会导致伪影和模糊。在本文中,我们将相位检索作为非线性反问题,从XPCT测量中求解了传输函数(这是投影的负数指数)。我们使用约束来在相位和吸收预测之间执行比例。我们不使用约束,例如较大的菲涅尔数,缓慢变化的阶段或bert/rytov近似值。我们的方法也不需要任何正则化参数调整,因为没有明确的稀疏性执行正则化功能。我们使用模拟和实际同步物数据集验证非线性相检索(NLPR)方法的性能。我们将NLPR与流行的线性相检索(LPR)方法进行了比较,并表明NLPR具有更高的定量精度实现更清晰的重建。

X-ray phase contrast tomography (XPCT) is widely used for 3D imaging of objects with weak contrast in X-ray absorption index but strong contrast in refractive index decrement. To reconstruct an object imaged using XPCT, phase retrieval algorithms are first used to estimate the X-ray phase projections, which is the 2D projection of the refractive index decrement, at each view. Phase retrieval is followed by refractive index decrement reconstruction from the phase projections using an algorithm such as filtered back projection (FBP). In practice, phase retrieval is most commonly solved by approximating it as a linear inverse problem. However, this linear approximation often results in artifacts and blurring when the conditions for the approximation are violated. In this paper, we formulate phase retrieval as a non-linear inverse problem, where we solve for the transmission function, which is the negative exponential of the projections, from XPCT measurements. We use a constraint to enforce proportionality between phase and absorption projections. We do not use constraints such as large Fresnel number, slowly varying phase, or Born/Rytov approximations. Our approach also does not require any regularization parameter tuning since there is no explicit sparsity enforcing regularization function. We validate the performance of our non-linear phase retrieval (NLPR) method using both simulated and real synchrotron datasets. We compare NLPR with a popular linear phase retrieval (LPR) approach and show that NLPR achieves sharper reconstructions with higher quantitative accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源