论文标题

张量网络代码

Tensor-network codes

论文作者

Farrelly, Terry, Harris, Robert J., McMahon, Nathan A., Stace, Thomas M.

论文摘要

受全息代码和张量 - 网络解码器的启发,我们引入了张量 - 网络稳定器代码,并带有天然张量 - 网络解码器。这些代码可以与任何几何形状相对应,但是,作为一种特殊情况,我们将全息代码推广到超出完美或完美的异形法构建的代码,我们给出了一个与都不相对的示例。使用张量 - 网络解码器,我们在去极化噪声下发现该代码的阈值为18.8%。我们还表明,对于全息代码,精确的张量 - 网络解码器(无键差截断)具有有效的效率,即使对于局部相关的噪声,复杂性也具有多项式的复杂性。

Inspired by holographic codes and tensor-network decoders, we introduce tensor-network stabilizer codes which come with a natural tensor-network decoder. These codes can correspond to any geometry, but, as a special case, we generalize holographic codes beyond those constructed from perfect or block-perfect isometries, and we give an example that corresponds to neither. Using the tensor-network decoder, we find a threshold of 18.8% for this code under depolarizing noise. We also show that for holographic codes the exact tensor-network decoder (with no bond-dimension truncation) is efficient with a complexity that is polynomial in the number of physical qubits, even for locally correlated noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源