论文标题

当深入强化学习符合联合学习时:5G超密集网络中的多访问边缘计算的智能多时间尺度资源管理

When Deep Reinforcement Learning Meets Federated Learning: Intelligent Multi-Timescale Resource Management for Multi-access Edge Computing in 5G Ultra Dense Network

论文作者

Yu, Shuai, Chen, Xu, Zhou, Zhi, Gong, Xiaowen, Wu, Di

论文摘要

超密集的边缘计算(UDEC)具有巨大的潜力,尤其是在5G时代,但它仍然面临当前解决方案的挑战,例如缺乏:i)有效利用多个5G资源(例如计算,通信,存储和服务资源); ii)低开销卸载决策和资源分配策略; iii)隐私和安全保护计划。因此,我们首先提出了一个智能的超密集边缘计算(I-UDEC)框架,该框架将区块链和人工智能(AI)集成到5G超密集的边缘计算网络中。首先,我们显示框架的体系结构。然后,为了实现实时和低间接费用计算的卸载决策和资源分配策略,我们设计了一种新颖的两次尺度深度强化学习(\ textit {2TS-DRL})方法,分别包括快速计算和缓慢的时间表。主要目的是通过共同优化计算卸载,资源分配和服务缓存位置来最大程度地减少总卸载延迟和网络资源的使用。我们还利用联合学习(FL)以分布式方式训练\ textIt {2TS-DRL}模型,旨在保护边缘设备的数据隐私。仿真结果证实了\ textIt {2TS-DRL}和fl在I-UDEC框架中的有效性,并证明我们提出的算法可以将任务执行时间缩短到31.87%。

Ultra-dense edge computing (UDEC) has great potential, especially in the 5G era, but it still faces challenges in its current solutions, such as the lack of: i) efficient utilization of multiple 5G resources (e.g., computation, communication, storage and service resources); ii) low overhead offloading decision making and resource allocation strategies; and iii) privacy and security protection schemes. Thus, we first propose an intelligent ultra-dense edge computing (I-UDEC) framework, which integrates blockchain and Artificial Intelligence (AI) into 5G ultra-dense edge computing networks. First, we show the architecture of the framework. Then, in order to achieve real-time and low overhead computation offloading decisions and resource allocation strategies, we design a novel two-timescale deep reinforcement learning (\textit{2Ts-DRL}) approach, consisting of a fast-timescale and a slow-timescale learning process, respectively. The primary objective is to minimize the total offloading delay and network resource usage by jointly optimizing computation offloading, resource allocation and service caching placement. We also leverage federated learning (FL) to train the \textit{2Ts-DRL} model in a distributed manner, aiming to protect the edge devices' data privacy. Simulation results corroborate the effectiveness of both the \textit{2Ts-DRL} and FL in the I-UDEC framework and prove that our proposed algorithm can reduce task execution time up to 31.87%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源