论文标题

Zariski空间的孤立点

Isolated points of the Zariski space

论文作者

Spirito, Dario

论文摘要

令$ d $是一个积分域,$ l $是包含$ d $的字段。我们研究Zariski空间的隔离点$ \ MATHRM {ZAR}(L | D)$,相对于可构造拓扑。特别是,我们完全表征了$ l $(作为一个点)隔离时,并且在假设$ l $是$ d $的商字段的情况下,隔离尺寸$ 1 $的估值域;结果,当$ d $是noetherian域时,我们发现$ \ mathrm {zar}(d)$的所有隔离点。我们还表明,如果$ v $是一个估值域,而$ l $超过$ v $,则$ v $至$ l $的扩展名没有孤立的积分。

Let $D$ be an integral domain and $L$ be a field containing $D$. We study the isolated points of the Zariski space $\mathrm{Zar}(L|D)$, with respect to the constructible topology. In particular, we completely characterize when $L$ (as a point) is isolated and, under the hypothesis that $L$ is the quotient field of $D$, when a valuation domain of dimension $1$ is isolated; as a consequence, we find all isolated points of $\mathrm{Zar}(D)$ when $D$ is a Noetherian domain. We also show that if $V$ is a valuation domain and $L$ is transcendental over $V$ then the set of extensions of $V$ to $L$ has no isolated points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源